International Journal of

HIGH PERFORMANCE

Research Paper COMPUTING APPLICATIONS

The International Journal of High
Performance Computing Applications
1-17

© The Author(s) 2017

Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342017718068
journals.sagepub.com/home/hpc

®SAGE

BOAST: A metaprogramming
framework to produce portable
and efficient computing kernels
for HPC applications

Brice Videau'r?, Kevin Pouget"3, Luigi Genovese>"*, Thierry Deutsch?*,
Dimitri Komatitsch®%’, Frédéric Desprez"8 and Jean-Francois Méhaut'”

Abstract

The portability of real high-performance computing (HPC) applications on new platforms is an open and very delicate
problem. Especially, the performance portability of the underlying computing kernels is problematic as they need to be
tuned for each and every platform the application encounters. This article presents BOAST, a metaprogramming frame-
work dedicated to computing kernels. BOAST allows the description of a kernel and its possible optimizations using a
domain-specific language. BOAST runtime will then compare the different versions’performance as well as verify their
exactness. BOAST is applied to three use cases: a Laplace kernel in OpenCL and two HPC applications BigDFT (elec-

tronic density computation) and SPECFEM3D (seismic and wave propagation).

Keywords

Code generation, portability, genericity, autotuning, nonregression, testing, productivity and software design, high-perfor-

mance computing

l. Introduction

Porting and tuning high-performance computing
(HPC) applications to new platforms is tedious and
costly in terms of human resources. Many developer
teams are more concentrated on solving the physical
problems faster and better with new algorithms and
simulating new physics. This is why optimization, while
important, is a task which is sometimes neglected or
hidden for many developers. In the same way, domain-
specific language (DSLs) have exactly this goal, the
complete separation of the high-level code dedicated to
simulate new physics and the low-level one which is
more dependent on the HPC architecture. Nevertheless,
decoupling the high and low levels does not avoid the
need of optimizations which become more and more
unavoidable with new architectures based on many
cores and accelerators.

Unfortunately, portability efforts of the low-level
codes (i.e., computing kernels) are often lost when
migrating to a new architecture. Worse, code may lose
maintainability because several versions of some func-
tionalities coexist, usually with a lot of duplication. Thus,
productivity of porting and tuning efforts is low as a

huge fraction of those developments are never used after
the platform they were intended for is decommissioned.
The primary goal of the BOAST metaprogramming
framework is to simplify the optimization of computing
kernels for HPC applications. The main idea is to use a
high-level language to define an application program
interface (API) of computing kernels, that is, subroutines
and their related arguments, but also describe the way to
optimize it (unrolling, vectorization, parametrization,
templating, and tiling). BOAST will then test automati-
cally the many possibilities of optimizations and choose

'Laboratoire d’Informatique de Grenoble, Saint-Martin-d’Heres, France
2Centre National de la Recherche Scientifique, Paris, France
3Université Grenoble Alpes, Grenoble, France
4CEA/INAC/MEM/L_Sim, Grenoble, France

>Aix Marseille University, Marseille, France

6CNRS, Centrale Marseille, Marseille, France

’LMA, Marseille, France.

8Inria

Corresponding author:
Frédéric Desprez, Laboratoire d’Informatique de Grenoble, Inria, France.
Email: frederic.desprez@inria.fr

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1094342017718068
journals.sagepub.com/home/hpc

2 The International Journal of High Performance Computing Applications 00(0)

the best one after validation from a reference version.
Then BOAST can generate pieces of Fortran, C, Open
Computing Language (OpenCL), or CUDA codes, test
them for a specific target architecture.

With the definition of an API, BOAST can hide the
implementation details at a high level but also is a way
to factorize different kernels depending only on para-
meters such as data types, length of filters, or boundary
conditions. The maintainability and genericity of HPC
codes is often limited. One of the reasons is that pro-
ducing generic code in Fortran 90/95 is difficult as the
language does not really fit for it. Sometimes, adding
genericity or functionalities can be quite costly and may
degrade performance as optimization opportunities that
come from over-specification are lost. BOAST can pro-
vide a solution to handle genericity and add new func-
tionalities at low levels.

The article is organized as follows. First, in Section 2
we further motivate the need for metaprogramming fra-
meworks. Second, in Section 3 we illustrate the optimiza-
tion problems related to scientific computing with the
Laplace equation. Third, we present our solution, called
BOAST, its architecture, and its functionalities in Section
4. Fourth, we apply BOAST to three use cases: the
Laplace equation motivating example, short multidimen-
sional convolutions from the BigDFT quantum chemistry
application, and the seismic wave propagation simulator
SPECFEM3D where 80 GPU (graphics processing unit)
computing kernels have been ported improving consider-
ably the maintainability and providing a single code base
for OpenCL and CUDA kernel versions. Finally, before
a conclusion and future works, we compare BOAST with
other related works in Section 5.

2. Background and motivation

The motivation of the BOAST project comes from the
need of the HPC communities which have full and large
applications. These applications are difficult to port
and maintain for emerging architectures, especially
since new architectures are based on accelerators, lon-
ger vector units, or low power processors.

2.1. Evolution of HPC architectures

Evolution of HPC architectures is rapid and also
diverse. In the last 7 years, no less than seven architec-
tures have been number 1 in the Top 500:

Sunway processor (TaihuLight, 2016)

Intel Processor + Xeon Phi (Tianhe-2, 2013)
AMD Processor + NVIDIA GPU (Titan, 2012)
IBM BlueGene/Q (Sequoia, 2012)

Fujitsu SPARC64 (K computer, 2011)

Intel Processor + NVIDIA GPU (Tianhe-1, 2010)
AMD Processor (Jaguar, 2009)

Being able to efficiently use those architectures on
such a small period is challenging for scientists and
application developers.

The race to exascale is not going to simplify the
environment. All of the above machine architectures
can be considered to build these supercomputers and
other will appear soon. For instance, European FP7
project DEEP considers using Accelerators (XEON
Phi), while the European FP7 project Mont-Blanc con-
siders using the low-power embedded processor with
integrated GPU.

Running existing applications on these new architec-
tures is an open research subject as well as an ongoing
porting effort. Thus, those projects have work packages
dedicated to applications. Those work packages are
dedicated to porting and optimizing scientific applica-
tions on those new architectures. In the DEEP project,
6 applications were selected for porting and optimizing,
11 were selected in the Mont-Blanc project.

2.2. Scientific computing applications

Scientific computing applications are usually developed
by other science researchers such as physicists, chemists,
or meteorologists. Those codes are usually written in
Fortran for historical and performance reasons. Codes
can be quite huge (several thousands Lines of Code,
LoC) with lots of functionalities. Nonetheless, they are
usually based on computing kernels. Computing ker-
nels are resource intensive and well-defined parts of a
program that usually work on precisely defined data.
Those kernels represent the most time-consuming part
of an HPC application, and consequently, they are the
prime target for optimizations.

Those applications are often developed by several
individuals. Sometimes, some of those developers only
work a few months on the application. Maintaining
optimized code written by someone else is quite a chal-
lenge. Several languages and programming paradigms
can also be used in a project and thus the maintainer
must be knowledgeable in several areas of expertise.
Portability problems can also be caused by the avail-
ability of an optimizing compiler for a specific language
and architecture. C compilers are usually first available
while Fortran may sometimes come later.

In Section 4, we will present two HPC applications
that we used as use cases: SPECFEM3D and BigDFT.
They are both based on computing kernels and were
selected as candidate applications in the Mont-Blanc
project.

2.3. How should computing kernels be written?

The problem here is to obtain computing kernels that
present good performance on the architectures encoun-
tered by the application while staying portable after the

Videau et al.

optimization process took place. Indeed, the applica-
tion might encounter one of the many architectures that
can be found in HPC. Investing manpower to optimize
the application for a new architecture is reasonable, suf-
fering hindrance from previous optimization work is
not. Thus, optimizations have to be as orthogonal as
possible from one another so as to be easily activated
and deactivated.

If this paradigm is followed by developers, then they
will rapidly be confronted with a huge optimization
space to search. They will need to be able to test easily
the performance impact of the chosen optimizations
without running the full application. The same reason-
ing implies that kernels should be tested for nonregres-
sion without running the full application.

What we want is computing kernels that are written
in a portable manner, in a way that raises developer pro-
ductivity, and they must present good performance.

3. Basic example: OpenCL Laplace

During one of the Mont-Blanc face-to-face meeting, a
talk on OpenCL optimization on the Mali GPU was
given. One of the case studies was a Laplace filter. This
is a good example of an algorithm that is simple in its
formulation but can be complex to optimize because
many different optimizations are available and can be
combined together. The correct combination of optimi-
zations will depend on the target architecture.

3.1. The Laplace filter

Listing 1 shows a simple implementation of the Laplace
filter in C99. For the sake of clarity, boundary condi-
tions have been omitted.

Listing 1. Laplace C99 filter.

A naive implementation in OpenCL is proposed in
Listing 2. Each work item processes one pixel of the
resulting image.

Listing 2. Laplace OpenCL filter.

3.2. Possible optimizations of the OpenCL version

Several optimizations were proposed and successively
applied to the previous implementation.

Vectorization: The first proposed optimization
involves computing five pixels instead of one using the
vectors available on the Mali architecture. This is done
using the native OpenCL support for vectorization.
For instance, vloadl6 loads 16 consecutive elements
from memory and stores it in a vector. Here, the loaded
vector is of type uchar16, meaning that it is a vector of
16 consecutive bytes. In order to do computations
without overflowing, those vectors have to be

void laplace(const int width, const int height,
const unsigned char src[height][width][3],
unsigned char dst[height][width][3]){

for (int j = 1; j < height —1; j++) {
for (int i = 1; i < width—1; i++) {
for (int ¢ = 0; ¢ < 3; c++4) {
int tmp =
—sre[j—1][i—=1][c] — sre[j—1[i1lc] — sre[j—11[i+1][c]\
— sre[j Jli—1le] + 9xsrc[j 1[illc] — sre[j I[i+1][c]\
— sre[j+1][i—=1][c] — sre[j+1][i][c] — sre[j+1][i+1][c]:
dst[j][i][c] = (tmp<O ? 0 : (tmp>255 ? 255 : tmp));

}
}

}

Listing 1. Laplace C99 filter.

kernel laplace (const int width, const int height,
global const uchar xsrc,
global uchar xdst){
int i = get_global_id(0);
int j = get_global_id(1);
for (int ¢ = 0; ¢ < 3; c++) {

int tmp = —src[3xwidth*(j—1) + 3*(i—1) + c]\

— sre[3xwidth*(j—1) + 3%(i) + c]\

— sre[3xwidth*(j—1) + 3*%(i+1) + c]\

— sre[3sxwidth=(j) + 3%(i—1) + c]\

+ 9xsre[3sxwidthx(j) + 3*(i) + c]\

— sre[3xwidth=(j) + 3%(i+1) + c]\

— sre[3xwidth*(j+1) + 3%(i—1) + c]\

— sre[3xwidth*(j+1) + 3*(i) + c]\

— src[3*xwidth*(j+1) + 3*(i+1) + c];
dst[3xwidth*j + 3%i + c¢] = clamp(tmp, 0, 255);

}

Listing 2. Laplace OpenCL filter.

converted (using convert_int16) to a signed and bigger
integer type. Here, they are converted to signed 4 bytes
integers, leading to a vector size of 64 bytes.

Once those vector are loaded they can be used in
Single Instruction Multiple Data paradigm. Operations
are done component-wise on the vector. For instance,
v22 * (int16)9 multiplies each component of the vector
by 9. The same thing goes for the difference operator.
Once computed, the result is clamped and converted
back to bytes using convert_ucharl6.

Using vectors of 16 elements, 5 pixels (15 compo-
nents) can be simultaneously loaded and can be used in
computation. Here, the developer chose a pixel-based
approach and thus decided to only save the 15 relevant
components. These components are saved in a vector
manner using the power of two decomposition of 15.
The first eight components (0—7) are saved using vstore8
then the next four (8,9,a,b) using vstore4 and so on.

This optimization yields speedups between 1.5 and 6
depending on the image size.

Listing 3. Laplace OpenCL Filter Vectorized.

Synthesizing loads: 1t is possible to reduce the num-
ber of loads since the vectors are overlapping. Listing 4
shows how the vectors are loaded in this case. This opti-
mization yields marginal improvements.

Listing 4. Laplace OpenCL Filter Vectorized with
Synthesized Loads.

4 The International Journal of High Performance Computing Applications 00(0)

kernel laplace(const int width, const int height,
global const uchar xsrc,

global uchar xdst){

int i = get_global_id(0);

int j = get_global_id(1);

ucharl6é v11_ =vloadl16(0,src + 3xwidth*(j—1) + 3%5%xi —3);
ucharl6 v12_ =vloadl6(0,src + 3xwidth*(j—1) + 3*5x1)
ucharl6 v13_ =vloadl6(0,src + 3xwidth*(j—1) + 3*%5%1 +3);
ucharl6 v21_ =vloadl6(0,src + 3xwidth*(j) + 3%5%i —3);
ucharl6 v22_ =vloadl6(0,src + 3xwidth=(j) + 3%5%i)
ucharl6 v23_ =vloadl16(0,src + 3xwidth*(j) + 3%5%i +3);
ucharl6 v31_ =vloadl16(0,src + 3xwidth*(j+1) + 3x5%xi —3);
ucharl6 v32_ =vloadl6(0,src + 3xwidth*(j+1) + 3*5x1)
ucharl6 v33_ =vloadl6(0,src + 3xwidth*(j+1) + 3%5%1 +3);

intl6 vIl = convert_intl6(vll_);
intl6 vI2 = convert_intl6(vI2_);
intlé v13 = convert_intl6(vI3_);
intlé v21 = convert_intl6(v21_);
intl6 v22 = convert_intl6(v22_);
intl6 v23 = convert_intl6(v23_);
intl6é v31 = convert_intl6(v3I_);
intlé v32 = convert_intl6(v32_);
intl6é v33 = convert_intl6(v33_);
intl6é res = v22 x (intl6)9 — vIl — v12 — v13 — v21 — v23

— v31 — v32 — v33;
res = clamp(res, (intl6)0, (intl6)255);
uchar res_ = convert_ucharl6(res);

vstore8 (res_.s01234567, 0, dst + 3xwidth*j + 3x%5%1i);
vstore4 (res_.s89%ab , 0, dst + 3xwidth*j + 3%5%i + 8);
vstore2 (res_.scd, 0, dst + 3xwidth*j + 3%5%i + 12);
dst[3xwidth*j + 3%5%i + 14] = res_.se;

}

Listing 3. Laplace OpenCL Filter Vectorized.

ucharl6 v11_ =vloadl6(0, src + 3xwidth*(j—1) + 3%5%xi —3);
ucharl6 v13_ =vloadl6(0, src + 3xwidth*(j—1) + 3%5%xi +3);
ucharl6 v12_ =ucharl6(vl1_.s3456789a, v13_.s56789abc);
ucharl6 v21_ =vloadl6(0, src + 3xwidth*(j) + 3%5%xi —3);
ucharl6 v23_ =vloadl6(0, src + 3xwidth*(j) + 3%5%xi +3);
ucharl6 v22_ =ucharl6(v21_.s3456789a, v23_.s56789abc);
ucharl6 v31_ =vloadl6(0, src + 3xwidth*(j+1) + 3%5xi —3);
ucharl6 v33_ =vloadl6(0, src + 3xwidth*(j+1) + 3%5%xi +3);
uchar16 v32_ =ucharl6(v31_.s3456789a, v33_.s56789%abc);

Listing 4. Laplace OpenCL Filter Vectorized with Synthesized
Loads.

shortl6 vil convert_short16(vll_);
shortl6é vi2 convert_short16(v12_);
shortl6é vi3 convert_short16(vI3_);
shortl6 v21 convert_short16(v2I_);

shortl6 v22
shortl6 v23
shortl6 v31
shortl6 v32
shortl6 v33

convert_short16(v22_);
convert_short16(v23_);
convert_short16(v31_);
convert_short16(v32_);
convert_short16(v33_);

shortl6 res = v22 x (short)9 — vIl — vI12 — v13 — v21 —
v23 — v31 — v32 — v33;

res = clamp(res, (shortl6)0, (shortl6)255);

Listing 5. Laplace OpenCL Filter Vectorized Using short.

Temporary variables size: Using int to store inter-
mediary results is unnecessary. Listing 5 shows how the
code is modified to use smaller types. This yields a
speedup of 1.3 for most image sizes.

Listing 5. Laplace OpenCL Filter Vectorized Using
short.

More optimizations: Several other optimizations can
be attempted at this point. For instance, reducing or

| Application kernel | Optimization space | | ool
: (SPECFEM3D, prunner: ASK, "?;y M A(};II\SO
: BigDFT, ...) Collective Mind e
: [1 A
: Y |
2 : Kernel written in 1 Performance Binary
: BOAST DSL 4 measurements kernel
5 : Select i
i Select target| — Select itz e
gt language optimizations data
o
=
o0
=l
E
2
o Select performance Select compiler
o . .
M metrics , and options
© Fortran OpenCL CUDA C with vector
kernel kernel kernel kernel intrinsics kernel

Figure I. Structure and workflow of the BOAST framework.

increasing the number of pixels each work item is pro-
cessing. They can yield improved performance in some
cases, especially when avoiding memory alignment
problems. These optimizations will not be shown here
but can be found in Adeniyi-Jones. Others consist in til-
ing the problem space or improving the loads synthesis.

3.3. Improving the methodology

The process described in the previous subsection is
quite tedious and requires some intimate knowledge of
the target architecture. The results are impressive, as
speedups of almost 10 are observed compared to the
naive OpenCL implementation.

Nonetheless, the process is frustrating. The optimi-
zations are never evaluated independently from one
another. Some were arbitrarily configured (like the
number of pixels chosen for instance). Testing the dif-
ferent combinations of those optimizations and the dif-
ferent parameters would be very costly in developer
time and, moreover, like all repetitive and tedious tasks,
error prone. Thus, every created kernel would have to
be thoroughly tested to ensure that no error was done.

In the next section, we will present our answer to
these issues: BOAST. BOAST is a framework dedicated
to kernel description, optimization, regression testing,
and autotuning.

4. BOAST: Using code generation in
application autotuning

BOAST provides scientific application developers with
a framework to develop and test application computing
kernels (Cronsioe et al., 2013).

Figure 1 illustrates the workflow and program struc-
ture. The user starts from an application kernel (either
designed or implemented), and writes it in a dedicated

Videau et al.

language (Step 1). The language provides enough flexi-
bility for the kernel to be metaprogrammed with several
orthogonal optimizations. From this set of optimiza-
tions, possible languages targets, and compilation
options, the user can design an optimization space to
explore. This optimization space can contain rules to
remove infeasible candidates. BOAST provides the
mechanisms to specify those optimization spaces and
enforce the users rules.

Once this optimization space is designed, the user
selects an optimization strategy, brute force and genetic
algorithms are provided by BOAST, or can design his
own. BOAST will then evaluate the different candidates
generated by the optimization program. The candi-
date’s parameters define the output source code that
will be generated by BOAST (Step 2). The resulting
code source is then built according to the specified com-
piler and options (Step 3). The kernel can be bench-
marked and tested for nonregression. Based on the
results, other optimizations can be selected (Step 4).
The process can be repeated until a good candidate is
found on the target platform. The resulting kernel is
then added to the program (Step 5).

Of course, this workflow is not the only possible use
of BOAST. Especially, during the kernel description
phase the user can use the BOAST framework to test
his existing optimizations and analyze the results in
order to design new optimizations. He can possibly do
it using external tools.

In order to achieve those results, three aspects should
be considered: code description, code generation, and
kernel execution runtime.

4.1. Kernel description language

Usually, computing kernels are hotspots of an HPC
application, and they take most of the time based on
loop nests. A lot of efforts are dedicated to their tuning
and the obtained result is often quite different from the
original procedure. Several transformations can be
applied to such kernels. And those optimizations are
often applied manually as compiler may fail to recog-
nize the opportunity.

There are many different loop optimization tech-
niques (Wolf and Lam, 1991). We can cite loop skewing
(Wolfe, 1986; derives nested loops wavefronts) or loop
interchange (Allen and Kennedy, 1984; loop variables
change places). The importance of correct loop imbri-
cation on Basic Linear Algebra Subprograms (BLAS;
Lawson et al., 1979) operations is studied by Soliman
(2009), and shows performance increase of a factor up
to 5 when using correct loop imbrication. The impor-
tance of code transformation is stressed in Ye et al.
(2012), where a selection of GPU kernels are ported to
central processing unit (CPU) and optimized.

BOAST kernel description language should be able
to express all these optimizations. This gives us a set of
constraints to implement in the language:

e Arbitrary number of variables have to be created
and manipulated (types, attributes, etc.).

e Procedures have to be abstracted (reunite Fortran
and C like languages, attributes, etc.).
Functions must be available.
Variables, constants and functions should be able
to be composed in complex expressions.

e Basic control structures (for, while, if/else, etc.)
have to be abstracted.

e Powerful array management features (allowing sev-
eral dimensions, transformations, indexing, etc.).

In order to manipulate those abstractions, we want
to have a syntax similar to what programmers use. For
instance, commonly used operators have to be available
and behave as expected. It must also be possible to dif-
ferentiate an action on an abstraction in the context of
an expression and in the context of the management of
this expression. ¢ = a + b, an expression that affects
the results of a + b to ¢ is not equal to ¢ <— a + b,
which saves the expression a@ + b to a variable ¢. This is
why an embedded domain-specific language (EDSL)
approach was selected (Hudak, 1996). This feature
allows for the coexistence of two languages: the host
language and the DSL. In our case, DSL allows the
description of the kernel (¢ = a + b), while the host lan-
guage provides the metaprogramming of the kernel
(¢ < a + b). Operator overloading of the host language
will provide the familiar syntax programmers are accus-
tomed to.

It was also important to have our constructs like for
loops to have a syntax approaching those commonly
found in programming languages. To this end, we
needed a language which could seamlessly pass a block
of code to a function. Ruby (Matsumoto and Ishituka,
2002) is one such language. It has deep introspection
capabilities as well. This is the main reason why it was
selected for BOAST.

One of the added advantages of using a high-level
scripting language like Ruby as the host language is its
interfacing capabilities, providing an easy way to use
the libraries needed during the development of the
framework.

4.1.1. BOAST keywords. In order to clearly differentiate
what is going to be generated from what is related to
manipulations in the host language, four keywords were
defined. They are decl, pr, opn, and close. As the lan-
guage is an EDSL, these four keywords are methods in
the BOAST namespace. Sample usage of these key-
words will be found in the next figures.

6 The International Journal of High Performance Computing Applications 00(0)

1 i = BOAST:: Int(”i”) # or BOAST:: Variable::new(”i”, Int)
2 |k = BOAST:: Int(”k”, :size => 8)
3 1 = BOAST:: Real(”1”, :dim => [BOAST::Dim(—5, 21)], :local
=> true)

4 |BOAST::decl i, k, 1
5 |BOAST::pr i === 5
6 |[j=1+5
7 |BOAST::pr k === j * 2
8 |BOAST::pr I[k] === 1.0
9 |BOAST::register_funccall (”sin”)
10 |BOAST::pr 1[k+1] === BOAST::sin(j)

Listing 6. BOAST code.
1 | integer (kind=4) :: i
2 | integer (kind=8) :: k 1 |int32_t i;
3 real (kind=8), dimension 2 |int64_t k;

(—5:21) :: 1 3 | double 1[27];

4 |i=25 4 i =5;
5 |k = (i+5)%(2) 5 |k = (i+5)*(2);
6 |1(k) = 1.0_wp 6 | 1[k—=(=5] = 1.0;
7 | 1(k+1) = sin(i+5) 7 | 1[k+1—(=5)] = sin(i+5);

Listing 7. Fortran output. Listing 8. C output.

Figure 2. BOAST code snippet for variables and expressions.

The decl method is used to declare variables or pro-
cedures and functions. The pr method calls the public
pr method of objects it is called on. Each BOAST object
is responsible for printing itself correctly depending on
the BOAST configuration at the time the print public
method is called. Calling directly the pr method of a
BOAST object yields the same result. The opn method
can be used to print the beginning of a control structure
without an associated code block. The close method is
the counterpart to the opn method. It is used to close a
control structure without an associated code block.

4.1.2. BOAST abstractions. BOAST defines several classes
that are used to represent the structure of the code.
These classes can be sorted in two groups, algebraic
related and control flow related.

4.1.3. Algebra. The first and most fundamental abstrac-
tion is named Variable. Variables have a type, a name,
and a set of named attributes. The existing attributes
are mainly inspired from Fortran. Those attributes are
not limited and can be arbitrarily enriched, allowing a
lot of flexibility in Variable management.

The second abstraction is named Expression. It com-
bines variables into algebraic or logic expressions. Most
of the classical operators are overloaded for those two
abstractions and thus the syntax of the expressions is
rather straightforward. The exception is the assignment
operator as it is important to differentiate between
assigning an Expression or a Variable in the Ruby

context and the assignment operator in the context of a
BOAST Expression. Thus, the assignment in a BOAST
Expression is represented as the = = = operator, while
the classical assignment is kept as the = operator.
Function calls (FuncCall) are also abstracted and can
be used in Expressions.

Figure 2 shows some basic usage of both Variables
and Expressions as well as the pr and decl/ keywords.
For clarity, we stayed out of BOAST namespace so
BOAST-related class and methods are prefixed with
BOAST::. Listing 6 shows the BOAST code that pro-
duces the Fortran (Listing 7) and C (Listing 8) output.
First, we define two variables i and k (note that k is 64
bit integer). The third variable named / is a one-dimen-
sional local array of length 27, it is indexed in the range
—5to 21. All those Variables are affected to Ruby vari-
ables of the corresponding name.

Listing 6. BOAST code.
Listing 7. Fortran output.
Listing 8. C output.

On Line 4, we declare those three variables. Variable
i is then assigned the value 5. On Line 6 the j Ruby vari-
able is used to store the BOAST expression i + 5. This
variable will be used transparently through the rest of
the program.

On Line 8, we use variable k to index into array /
using the bracket operator. Would the array be multidi-
mensional, the index would be comma separated, simi-
lar to Fortran notation.

Videau et al.

BOAST : :
i = BOAST:: Int(”i”)
j = BOAST:: Int(”j”)
BOAST::pr j === 0

BOAST::pr j === j + 1
}
}

register_funccall ("modulo™)

BOAST :: pr BOAST:: For(i, 0, 100) {
BOAST :: pr BOAST:: If (BOAST:: modulo(i,7)

0) {

O 001N W B~ WK —

Listing 9. BOAST code.

i=0
do i=0, 100, 1
if (modulo (i,
j=j+1
end if
end do

7)==0) then

(oI O S

1=0;
for (i=0; 1i<=100; i+=1){
if (modulo(i, 7)==0){
j=i+l;

[N, F SO (S

}

Listing 10. Fortran output.

Listing 11. C output.

Figure 3. BOAST code snippet for control structures.

On the last line, a call to the sin function is made
through the creation of a FuncCall object. The possibil-
ity to use this method is declared using the register -
Sfunccall method.

4.1.4. Control structures. The classical control structures
are implemented. If, For, While, Case are abstractions
in BOAST matching the behavior of corresponding
control structures in other languages. An exception is
the For in BOAST that matches more closely the For in
Fortran than the one in C.

Figure 3 shows some basic usages of the control
structures. The example shows a C macro or function
that behaves similarly to the Fortran modulo intrinsic.
The sample script (inefficiently) computes and stores in
j the number of multiples of 7 in the 0-100 range. It
uses the For and If control structures. A Ruby block is
passed to each of those constructs. This block is evalu-
ated at the time the construct is printed. If several such
constructs are needed (in an if elsif else case, for
instance), they can be explicitly passed as parameters
using the lambda Ruby keyword.

Listing 9. BOAST code.
Listing 10. Fortran output.
Listing 11. C output.

The last control structure is Procedure. It describes
either procedures or functions. Code in Figure 4 pre-
sents the use of this abstraction. It illustrates the signa-
ture of a real kernel from BigDFT. This kernel uses an
input array x and an output array y, both composed of
double precision numbers. Those arrays have two
dimensions which depend on input variables n and

n = Int(’n”, :dir=>:in)

ndat = Int(”ndat”, :dir=>:in)

X Real ("x”, :dir=>:in, :dim=>[Dim(0, n—1), Dim(ndat)])
y Real (”y”, :dir=>:out, :dim=>[Dim(ndat), Dim(0, n—1)])
p = Procedure(”magicfilter”, [n, ndat, x, y])

opn p

close p

B N

Listing 12. BOAST code.

SUBROUTINE magicfilter (n, ndat, x,
integer (kind=4), intent(in) :: n
integer (kind=4), intent(in) :: ndat
real (kind=8), intent(in), dimension(0:n—(1), ndat) :: x
real (kind=8), intent(out), dimension(ndat, O:n—(1)) :: y

END SUBROUTINE magicfilter

y)

U AW —

Listing 13. Fortran output.

1 void magicfilter (const int32_t n, const int32_t ndat,
2 const double * x, double x y) {
3]y

Listing 14. C output.

Figure 4. BOAST code snippet for procedure.

ndat. We can see here the use of the opn and close key-
words that are used to print a control structure without
an associated Ruby block. This time we placed our-
selves inside the BOAST namespace.

Listing 12. BOAST code.
Listing 13. Fortran output.
Listing 14. C output.

The generated outputs in Fortran (Listing 13) and C
(Listing 14) show the difference in metainformation
that is kept between both versions.

4.2. BOAST runtime

In the previous section, we presented the BOAST’s lan-
guage. This allows us to describe procedures and

8 The International Journal of High Performance Computing Applications 00(0)

functions and to metaprogram them using Ruby. Each
version has to be compiled, linked, and executed to
assess its performance in order to find the best version
of a computing kernel. This can be very time-
consuming if this process cannot be automated. By
enabling more versions for evaluation, the automation
will bring improved portability, better performance,
and in the end will improve the productivity of the
developer.

In this section, we will present the different aspects
of BOAST runtime that allow this automation. Those
aspects are multitarget language generation (perfor-
mance, portability), kernel compilation (productivity,
performance), kernel execution (productivity, perfor-
mance), and last, kernel tracer, dumper and replay for
nonregression tests (productivity).

4.2.1. Multitarget language generation. Language availabil-
ity and performance varies between platforms. It is thus
important to express computing kernels in different
languages, based on the availability and their respective
merits on the target platform. Some languages have
additional features, such as languages that target GPUs
(OpenCL, CUDA), or languages that support multi-
threading paradigms (OpenMP). The developer should
be given tools to determine what kind of language is
currently used in order to be able to use those addi-
tional features.

Similarly, the target language must be changed with
ease in order to compare different alternatives. Two
methods are dedicated to this task: ser lang and
get_lang. The target language can also be set through
an environment variable before launching BOAST,
allowing for easy command line scripting.

4.2.2. Compilation. Compilation of the generated kernels
must also be very flexible because HPC application devel-
opers may encounter platforms with very diverse compila-
tion environments. Proprietary and dedicated compilers
are common on HPC infrastructures. Thus, BOAST build
system exhibits similar behavior to common build systems.
Compilers and their compile/build options can be speci-
fied at several places. The list by increasing order of prece-
dence includes: BOAST configuration file, environment
variables, and at kernel build time.

This way the framework to test different compiler
optimizations is completely available and performance
study can include both kernel-related parameters and
compilation-related parameters. This behavior is con-
tained in the CKernel class of BOAST. When instan-
tiating this class, a BOAST Procedure representing the
entry point of the kernel is specified.

4.2.3. Execution. The next logical step is to benchmark
the built kernel. BOAST offers a simple way to run a
kernel that was successfully built without the need to

fork another process. A built BOAST CKernel exposes
a run method that accepts arguments corresponding to
the BOAST Procedure used to instantiate the kernel.
Arrays must be instances of NArray which are numeri-
cal arrays that use C arrays underneath.

Arrays which correspond to output parameters will
be modified during the execution of the kernel so results
can be checked. This allows for easy nonregression test-
ing. The run method also returns information (and
result for kernels that are functions as well as output
scalars) about the run. For instance, one such informa-
tion includes the runtime of the kernel and it is obtained
using the system-wide real-time clock. Other probes can
be inserted at compiletime, if needed. BOAST also sup-
ports PAPI (Mucci et al., 1999) to capture hardware
performance counters during each kernel execution.

4.2.4. Kernel replay. The nonregression methodology
presented before is viable provided input data can be
generated at run time. For instance, in the case of the
Laplace kernel, generating an input image and the cor-
responding reference output image, using a reference
implementation, is easy. Unfortunately, it is not always
possible, because some applications have complex data
patterns that are difficult to synthesize without running
the full application. Thus, BOAST offers a way to load
binary data from the file system and use them as inputs
of a kernel. Outputs can also be checked against those
binary data, thus enabling (almost) data oblivious non-
regression testing.

In order to use this methodology, one has to be able
to trace an application to get input data. Such a tracer,
dedicated to CUDA and OpenCL, will be presented in
the next subsection.

4.3. Nonregression testing using trace debugging

Debugging applications running on GPU environments
is well recognized as a hard and time-consuming activ-
ity. In complement with BOAST, we designed a trace-
based debugging tool that simplifies this porting opera-
tion. The tool relies on BOAST support of multitarget
code generation (Section 4.2.1), used to validate an
application from one GPU-programming framework
to another or between different implementations using
the same programming model. A casestudy of the port
of a CUDA application to OpenCL is presented in
Section 5.3.

Listing 15. GPUTrace sample trace.

The idea behind this tool is based on the assumption
that the different GPU ports of the code should per-
form the very same operations, at least at the logical
level (the APIs will have implementation differences,
but they should offer nonetheless same functionalities).

Videau et al.

I | New kernel: update_potential_kernel

2

3 |New buffer #94, 2Mb, READ_WRITE (0x74d0420)

4 |New buffer #95, 2Mb, READ_WRITE (0x74d08d0)

5 |New buffer #96, 2Mb, READ_WRITE (0x74d0d80)

6 | ...

7 | Buffer #94 written, 2314764b at +0b

8 | Buffer #95 written, 2314764b at +0b

9 | Buffer #96 written, 2314764b at +0b

10 | ...

11 update_disp_veloc_kernel <128,1><4522,1>(

12 float xdispl=<buffer #94 1.00e—24, 1.00e—24, 1.00e—24,
1.00e—24, ...>

13 float sveloc=<buffer #95 0.00e+00, 0.00e+00, 0.00e+00,
0.00e+00, ...>

14 float sxaccel=<buffer #96 0.00e+00, 0.00e+00, 0.00e+00,
0.00e+00, ...>

15 const int size=<578691>

16 const float deltat=<1.365914e—04>

17 const float deltatsqover2=<9.328606e—09>

18 const float deltatover2=<6.829570e—05>

19

20 <out> float xdispl=<buffer #94 1.000e—24, 1.00e—24,
1.00e—24, 1.00e—24, ...>

21 <out> float xveloc=<buffer #95 0.000e+00, 0.00e+00,
0.00e+00, 0.00e+00, ...>

22 <out> float xaccel=<buffer #96 0.000e+00, 0.00e+00,
0.00e+00, 0.00e+00, ...>

23)

Listing 15. GPUTrace sample trace.

The usage of BOAST framework sustains this assump-
tion, as both sets of kernels should be generated from
the same source code.

Hence, the verification and validation of the new
port can be narrowed down to asserting that both codes
apply the same operations on the GPU. And the debug-
ging part will consist in understanding what diverges.
To that purpose, we developed GPUTrace, inspired
bystrace andltrace tools: GPUTrace dynamically pre-
loads a library between the application and the GPU
library, and collects the function name, execution range,
and argument values (input and output) of the relevant
function calls. These information are traced in a unified
format for all the APIs. This is a custom trace format.
Listing 15 presents a sample output generated during
SPECFEM3D tracing.

However, in contrast withstrace andltrace,
GPUTrace has to be state-full. Indeed, most of API
parameters are handles to opaque types. So, in order to
generate meaningful traces, GPUTrace gathers informa-
tion about these objects at creation time (handle value,
buffer creation size and attributes, kernel name and
prototype,etc.) and re-injects this information when the
objects used. A state-less implementation of GPUTrace
would highly rely on the GPU libraries introspection
capabilities, which seem not possible at the moment.

Once two call traces have been generated by GPU
Trace, the user can compare them with a graphicaldiff
tool, and spot the different porting mistakes: two para-
meters reversed, an offset incorrectly applied,etc.

By default, GPUTrace only prints a unique iden-
tifier (the creation index) for the memory buffers.
Additionally, GPUTrace supports several modifier flags.
One flag can be activated to append the first bits of the
buffer to the trace, printed in the right format, for visual
inspection. Another flag can be set to dump the whole
content of the buffer into a file, for a full inspection.

This last option is also useful to generate replay buf-
fers for BOAST kernel execution. With a set of filters
based on kernel names and execution counters, develo-
pers can precisely select which kernel execution para-
meters should be dumped, for further reuse as real-case
benchmarks and nonregression testing.

5. BOAST use cases

In this section, we will present the benefits of using
BOAST on the Laplace motivating example as well as
on two scientific applications. The first one, BigDFT
(Genovese et al., 2008), uses BOAST in order to develop
new functionalities with performance portability in
mind. The second one, SPECFEM3D (Komatitsch,
2011), uses BOAST to factorize OpenCL and CUDA
development, while having robust nonregression tests.

5.1. Laplace filter kernel

Section 3 presented the Laplace motivating example.
From this section, we know that a number of optimiza-
tions can have an impact on the performance of the ker-
nel on the Mali architecture. But, what is the impact in
other architectures? And, are there any additional opti-
mizations that can impact the performance?

5.1.1. Optimization space. The list of already identified
optimizations are vectorization, intermediary data type,
number of pixels processed, and synthesizing loads. To
create our generic implementation, we decided to work
at the component level rather than the pixel level. This
approach leads to more flexibility and genericity when
applying optimizations. We also decided to study the
impact of another parameter which is the number of
components to process on the column direction. This
leads to being able to process tiles instead of only rows.

Here are the parameters we finally selected for our
kernel optimization and their possible values:

X_component_number: a positive integer
y_component_number: a positive integer
vector_length: 1,2, 4, 8 or 16
temporary_size: 2 or 4

synthesize_loads: true or false
vector_recompute. true or false

The last parameter is used when x_component_num-
ber is not divisible by vector_length. Two solutions are
possible then, divide the remainder of the division in
vectors of smaller sizes (vector_recompute = false) or
load more data and compute useless values in vectors
of the specified size (vector_recompute = true). This last
option mimics the behavior of the ARM implementa-
tion, although when working at the component level it
may not be a valuable thing to try.

10 The International Journal of High Performance Computing Applications 00(0)

Table |. Best performance of ARM Laplace kernel.

Image size Naive (s) Best (s) Accel. BOAST (s) Accel.
768 X 432 0.0107 0.00669 X1.6 0.000639 X16.7
2560 1600 0.0850 0.0137 X6.2 0.00687 X124
2048<2048 0.0865 0.0149 X5.8 0.00715 X12.1
57603240 0.382 0.0449 X8.5 0.0325 X11.8
76804320 0.680 0.0747 X9.1 0.0581 X11.7
Table 2. Best performance of Laplace kernel on several architectures.

Image size ARM Intel Ratio NV Ratio
768X432 0.000639 0.000222 X2.9 0.0000715 X8.9
2560 1600 0.00687 0.00222 X3.1 0.000782 X8.8
20482048 0.00715 0.00226 X3.2 0.000799 x8.9
57603240 0.0325 0.0108 X3.0 0.00351 X9.3
76804320 0.0581 0.0192 X3.0 0.00623 X9.3

5.1.2. Performance results. Table 1 shows the best results
obtained by ARM on different images compared to the
naive implementation and to the best version BOAST
found. It shows that the generated version systemati-
cally outperforms the hand optimized version. As far as
the optimization options are concerned, the results are
disappointing: The same kernel configuration is the best
for all image sizes. This kernel uses x_component_num-
ber = 16, y_component_number = 1, vector_length =
16, temporary_size = 2 and synthesize_loads = false.
vector_recompute because Xx_component_number ==
vector_length. Those results show that, when working
on full vectors, synthesizing the loads is harmful to per-
formance and the programmer is better of trusting the
cache to load each vector in one cycle without compro-
mising the bandwidth. The results shown here are the
best of four runs for each configuration.

But what if we run our benchmark on other architec-
tures? Table 2 shows the results obtained when running
our BOAST implementation on other architectures.
The chosen architectures include an Intel i17-2760QM
CPU (Sandy Bridge architecture) that supports
OpenCL 1.2 and a system with an NVIDIA gtx680
GPU that supports OpenCL 1.1. We see that the per-
formance ratio between the different architectures is
stable across image sizes.

The optimization parameters selected are not the
same for those architectures. Indeed, the Intel CPU
favors kernels that have the parameters, x_compo-
nent_number = 16, vector_length = 8, temporary_size
= 2, and synthesize_loads = false. Once again vector -
recompute does not apply. y_component_number varies
from 4 to 2 when image size increases, thus decreasing
task granularity as the global work size increases. This
result is interesting because its unexpected nature
strongly backs the use of autotuning. The NVIDIA

GPU favors processing square tiles: x_component_num-
ber = 4, y_component_number = 4, vector_length = 4,
temporary_size = 2, and synthesize_loads = false.
Once more, vector_recompute has no meaning.

5.1.3. Laplace conclusion. In this subsection, we have
shown the interest of BOAST in optimizing a well-
known algorithm across different architectures. Chosen
optimization combinations are highly dependent on the
target architecture. But BOAST simplifies and speeds
up the identification of the correct combination at the
cost of metaprogramming. In the next subsections, we
will show that our methodology also applies to real
applications.

5.2. Creating an autotuned convolution library for
BigDFT using BOAST

In 2005, the EU FP6-STREP-NEST BigDFT
(Genovese et al., 2008) project funded a consortium of
four European laboratories (L_Sim,CEA Grenoble;
Basel University, Switzerland; Louvain-la-Neuve
University, Belgium, and Kiel University, Germany),
with the aim of developing a novel approach for DFT
calculations based on Daubechies wavelets. Rather
than simply building a DFT code from scratch, the
objective of this three-year project was to test the
potential benefit of a new formalism in the context of
electronic structure calculations.

As a matter of fact, Daubechies wavelets exhibit a
set of properties which make them ideal for a precise
and optimized DFT approach. In particular, their sys-
tematicity allows one to provide a reliable basis set for
high-precision results, whereas their locality (both in
real and reciprocal space) is highly desired to improve
the efficiency and the flexibility of the processing.

Videau et al.

Indeed, a localized basis set allows one to optimize the
number of degrees of freedom for a required accuracy
(Genovese et al., 2008), which is highly desirable given
the complexity and inhomogeneity of the systems under
investigation nowadays.

Despite that the application is mainly written in
Fortran (360 kLOC of Fortran), it currently also
includes 70 kLOC of C languages, accounting for more
than 50% of the code base. It is a parallel application
based on the standards MPI (2012) and OpenMP
(Dagum and Menon, 1998). It also supports CUDA
(NVIDIA, 2011) and OpenCL. In the recent years, this
code has been used for many scientific applications,
and its development and user consortium is continu-
ously growing. Massively parallel computations are
routinely executed with the BigDFT code, either in
homogeneous or hybrid architectures. In 2009, the
French Bull-Fourier award was attributed for the
implementation of the hybrid version of BigDFT
(Genovese et al., 2009).

5.2.1. BigDFT. In the Kohn-Sham formulation of
Density Functional Theory (DFT), the electrons are
associated to wavefunctions (orbitals), which are repre-
sented by arrays of floating point numbers. In wavelets
formalism, the operators are written via convolutions
with short, separable filters. The detailed description of
how these operations are defined is beyond the scope of
this article and can be found in the BigDFT reference
paper (Genovese et al., 2008). Convolutions are basic
operations of lots of scientific application codes, for
example, finite differences approaches, which are univer-
sally used in computational physics.

The CPU convolutions of BigDFT have thus been
thoroughly optimized. In a recent paper (Videau et al.,
2013), the optimization of the CPU convolutions of
BigDFT has been extensively considered. One example
of a specific convolution, called MagicFilter (Genovese
et al., 2010), can be seen in Listing 16. It applies a filter
filt to the data set in and then stores the result in the
data set out with a transposition (Goedecker 1993).

Listing 16. MagicFilter.

As we can see, there are three nested loops working
on arrays whose sizes vary. Various optimizations can
be applied to this treatment and may focus on the loop
structure, as well as on the size of the data.

5.2.2.A generic convolution library. The number of convolu-
tion kernels needed in BigDFT has been continuously
growing in the recent years. Various boundary condi-
tions and functionalities have been added, making the
BigDFT more and more powerful in terms of scientific
applications. However, the cost of maintenance and
development of the convolutions is always a delicate

1 | double filt[16] = {FO, F1, ... , FI5};
2 | void magicfilter (int n, int ndat, doublex in, doublex out){
3 double temp;

4 int m;

5 for(j = 0: j < ndat; j++) {

6 for(i = 0; i <n; i++) {

7 temp = 0;

8 for(k = 0; k < 16; k++) {

9 m = (i—7+k)%n

10 temp += in[m + j*n] = filt[k];
11

12 out [j + ixndat] = temp ;

13 }

14 1

15 |}

Listing 16. MagicFilter.

point to be considered while including a new function-
ality. The convolution patterns are usually rather simi-
lar, leading to code duplication and difficulties in code
maintainability.

Therefore, it appears very interesting to benefit from
an automatic tool to drive the implementation and the
generation of new convolutions. This would lead to an
optimized code, adapted to different computing plat-
forms, that is optimally factorized. In addition to this
point, the help of such code generator is also important
to build new science: The cost of implementing new
convolutions would become so little that other func-
tionalities (e.g., the generalization of the BigDFT con-
volutions to Neumann boundary conditions or the
usage of wavelet-on-the-interval basis) can be added
with limited manpower.

For these reasons, a convolution library has been
engineered with the help of BOAST. The detailed API
of the library is beyond the scope of this paper. The
spirit is similar to BLAS-LAPACK API, where low-
level operations are scheduled and called from high-
level operations. The basic blocks will be composed of
unidimensional wavelet transforms and convolutions
applied to multidimensional arrays. Combining those
blocks will yield multidimensional transforms.

Each of the building blocks of these convolution
libraries is optimally tuned by BOAST by choosing the
sources providing the optimal kernel for the chosen
computing platform. The sources of these kernels are
then collected and compiled to meet the API of the
library. A library written in this way might have an
impact going largely beyond the community of BigDFT
developers.

The interest in having a robust and optimally tuned
library in this scientific field is therefore evident.
Techniques are under investigation to also provide end
users with fine-tuned binaries rather than the source
codes, such that more aggressive interprocedural opti-
mization can be performed. Indeed, BOAST finds the
optimal source code for a given kernel and compiler
configuration but one could imagine using binary opti-
mizer to the compiled binaries. Those optimizers could
be coupled to BOAST and the output of the process
would be the final binary rather than the source code.

12 The International Journal of High Performance Computing Applications 00(0)

Synthesys Speedup

function of unrolling factor

;::% —
FORTRAN

—7— C OpenMP
—4— FORTRAN OpenP

Figure 5. Impact of unrolling, language used and OpenMP on a
wavelet transform code.

This experience therefore would be a first step toward
the release of a tunable optimized convolution library
oriented to computational physics communities.

5.2.3.Performance report. Several kernels have already
been implemented in BOAST for the convolution
library. Figure 5 shows the performance of the wavelet
transform operation as a factor of the unrolling length
of the outer loop, the language used to implement it as
well as the activation or not of the OpenMP paralleliza-
tion. Results are given as a speedup compared to the
sequential hand tuned implementation that can be
found in BigDFT. These tests were run on the Intel
Xeon X5550 that was used to hand optimize the code.

We can see that this function is better optimized
using Fortran and small unrolling factors. In the hand
optimized version, the unrolling factor was chosen
much too high (a factor of 12 was used). This factor
might have been optimal at the time the procedure was
optimized (compiler version changed in the meantime)
but since then the environment changed. Other optimi-
zations have also been incorporated in the BOAST
sources, like the systematic inner loop unrolling, and
those could also help increase performance while limit-
ing the interest of the outer loop unrolling.

Nonetheless, what is interesting from the physicist
point of view is that the generated source will give its
better performance on a whole range of architectures/
compilers combinations than that of the hand tuned
code.

5.3. Porting SPECFEM3D application kernels: From
CUDA to OpenCL using BOAST

In this last subsection, we present an alternative use
case of the BOAST framework, focused on portability.
As part of the Mont-Blanc project, we ported a scien-
tific application so that it could be use to benchmark
the Mont-Blanc HPC cluster. It was composed of 40
complex and hand-tuned CUDA kernels, that we
ported to the OpenCL framework. This scenario also

highlights the factorization and maintainability
improvements of the BOAST framework, as we
obtained a single BOAST implementation of the kernels
(instead of two, CUDA and OpenCL). This version of
the code is still used and updated in the upstream
project.

The challenges we faced in this case study were more
related to the complexity of the scientific application
and its kernels than to the BOAST framework.

5.3.1. Specfem3D. SPECFEM3D GLOBE!' is a free seis-
mic wave propagation simulator. It simulates seismic
wave propagation at the local or regional scale based
upon spectral element method, with very good accuracy
and convergence properties. It is a reference application
for supercomputer benchmarking, thanks to its good
scaling capabilities.

When we started to work on the project (version
v2.1 of July 2013), it supported graphics card GPU
acceleration through NVidia CUDA. This GPU sup-
port came in addition to the MPI support implemented
to enable multi-CPU parallel computing. Most of
SPECFEM3D code base is written in Fortran 2003 and
only the GPU-related parts are written in C. The split
between CPU and GPU code was done at a rather fine
grain, as the application counted more than 40 GPU
kernels. Some of them were quite simple (e.g.,perform-
ing a few vector operations, but at massively parallel
scale), while at the other side of the spectrum, some
complex kernels took more than 80 parameters and
performed very specific physical transformations.

Because of the complexity of the wave propagation
kernels, it was impossible for us to understand the ker-
nel’s source. Hence, we treated them as black-boxes,
and aimed at obtaining identical performances.
Furthermore, the kernels’ complexity prevents the spe-
cification of unit tests, thus the application is validated
by the accuracy of the results it produces (the seismo-
grams of the simulated earthquakes), against the actual
ones. Nonregression testing (after new developments) is
also based on these seismograms, with measurements
of the relative error between two identical simulations.

5.3.2. Porting to OpenCL. (a) Porting kernels to BOAST:
NVidia CUDA and OpenCL are based on the same
programming model: a massively parallel accelerator
running in disjoint, nonaddressable memory environ-
ment. Thanks to that proximity, we have been able to
carry out most of the porting task with only a limited
knowledge about SPECFEM23D internal physics.

This lack of SPECFEM3D internal knowledge led
us to be particularly careful to the path we undertook
for the port, as we would have been unable to under-
stand how and why the application was not operating
properly, if it was to fail.

Videau et al.

13

Hence, our first milestone in the port was the trans-
lation of SPECFEM3D’s CUDA kernels into BOAST
EDSL. This way, we could ask the BOAST framework
to generate a CUDA version of the kernels, plug them
back into SPECFEM3D and get (after fixing compile-
time errors—prototypes and naming mistakes mainly)
a first set of SPECFEM3D seismograms.

As we had expected, the seismograms were erro-
neous. But with the help of shell scripts and BOAST
framework ability to store and provide the kernels’
original source code, we built a set of SPECFEM3D
binaries including only one BOAST-generated kernel,
with all others reference kernels. Running and validat-
ing all these binaries enabled use to pinpoint the misbe-
having kernels. We finished the debugging with a side-
by-side comparison that highlighted the coding
mistakes.

(b) Porting run time to OpenCL: The second part of
the port consisted in the translation of the CPU side of
the application, from CUDA API to OpenCL. Most of
the functions of the interfaces are very similar, with
only naming-convention and data-structure distinc-
tions. Hence, it was clear that automatic rewriting tools
(namely, sed regexp and emacs-lisp functions) could be
useful. To give an idea of the cost of a manual rewriting,
we can count (in # of OpenCL API function calls): 70
kernel “function calls”, 790 arguments to set, 230 mem-
ory transfers, 160 buffer creations, and 270 releases.

Once the transformations were applied, compilation
errors fixed, and OpenCL unsuccessful function calls
solved, the application managed to complete its execu-
tion and generate a first set of seismograms. And again,
as expected and feared, these seismograms were not
valid as their shape was completely different from the
reference ones.

As we had already validated BOAST-generated ker-
nels (and trusted CUDA and OpenCL versions to be
semantically identical), we knew that the bugs were
now in the usage of the run time, and we had to find a
way to understand where SPECFEM3D’s CUDA ver-
sion of the code diverged from its OpenCL counterpart.
To help us in that purpose, we had a strong assump-
tion: Both versions of the code were supposed to per-
form exactly the same operations, with the same
“logical” parameters (the APIs have implementation dif-
ferences, for instance OpenCL has two memory trans-
fer functions, clEnqueueReadBuffer, clEnqueueWrite
Buffer, whereas CUDA has only one, with a direction
parameter cudaMemcpy (..., dir), but above that, it is
the same functionality).

Hence, our idea for locating the execution problems
was to make sure that both execution actually did the
same thing. As the OpenCL results were invalid, we
knew the executions would diverge at one or several
points.

(¢) Debugging OpenCL Execution: GPU Trace: With
the help of GPU Trace (described in Section 4.3), we
could confront CUDA and OpenCL execution traces
with a graphicaldiff tool, and spot the different porting
mistakes: some parameters reversed, offsets incorrectly
applied,etc.

One last problem remained, clearly highlighted by
the seismograms not matching perfectly (they had a
similar shape, but with a reduced intensity). We
added more verbosity to GPUTrace output: first the
initial bits of the GPU memory buffers, then their
full content. The drift was visible in the trace, but it
was nonetheless unclear where it started. We finally
got it after hours of code review of BOAST kernels
and OpenCL code. One kernel was three-dimen-
sional, whereas the others were two-dimensional. But
for all of them, only two dimensions were passed,
and one was missing.

(d) Evaluation: Our OpenCL/BOAST port of
SPECFEM3D is now merged in SPECFEM3D’s devel-
opment tree and under test and extension by different
research teams. On a platform with two K40x GPUs
and 24 Intel Xeon processors, we measured identical
performance between the original CUDA version and
our BOAST-CUDA version. This result was expected,
as the BOAST-generated version is identical to the
original, except from naming differences.

With the same set of optimization flags, BOAST
CUDA and OpenCL versions reported similar execu-
tion time spans. The best execution speed was achieved
with CUDA version though (25% higher than
OpenCL), as one optimization parameter
(CUDA_LAUNCH_BOUND) cannot be passed to the
OpenCL run time, as of version 1.1. This parameter, in
addition to specifying the work group size (which can
be done in OpenCL), also constrains the number of
work group that must run in parallel on a multiproces-
sor. This value is set to 7 in CUDA. This means that
the compiler must be very conservative on register
usage in order to allow this parallelism which allows
better overlapping of communications end computa-
tions. This functionality is not supported in OpenCL.

Thanks to the porting of the SPECFEM3D GPU
kernels to BOAST EDSL, the size of the kernels’ source
code shrank by a factor of 1.8 (from 7500 to less than
4000 LOC, mainly because of the removal of code
duplication and manually unrolled loops). This is bene-
ficial for SPECFEM3D as it improves the readability
and maintainability of its source code. This gain was
confirmed by the SPECFEM3D community as the sub-
sequent developments have been carried out on the
BOAST version of the kernels, and not on the CUDA
or OpenCL generated code.

We have also been able to enhance SPECFEM3D’s
nonregression test-suite by adding per-kernel

14 The International Journal of High Performance Computing Applications 00(0)

nonregression tests. This was done with the help of
GPUTrace, that we used to capture all the input para-
meters of a particular valid kernel execution, as well as
the output values. Then, during the nonregression test-
ing, the BOAST framework loads these buffer files,
allocates GPU memory and initializes it through
CUDA or OpenCL run time, and triggers the kernel
execution. A comparison of the output values (for
instance against a maximal error level) validates the
nonregression.

In the same mindset, we provided SPECFEM3D
test-suite with kernel performance evaluation mechan-
isms. These tests will help developers to try new optimi-
zations in kernels’ code and measure their impact,
without executing the whole application.

6. Related work

Code generation and autotuning techniques are not
new. Nonetheless, with recent developments in hard-
ware, and the HPC landscape being as diverse as it is
now, there is a renewed interest in the field. This related
work section is split into three parts, focusing first on
autotuning frameworks. Tools that provide a DSL to
describe computing kernels will then be presented. Last,
optimization space pruners and their ties to autotuning
will be introduced.

6.1. Application autotuning

The most convenient way to obtain an application that
can be autotuned on a given platform is to base this
application on a widely used computing library. BLAS
(Dongarra et al., 1990) and LAPACK (Anderson et al.,
1999) are such libraries. These libraries are either hand
tuned for selected platforms or have autotuned imple-
mentations. Atlas (Whaley and Petitet,2005) is an auto-
tuned implementation of BLAS/LAPACK. ATLAS
authors defined the Automated Empirical Optimization
of Software methodology that we implemented with
BOAST. Their kernel generation is performed using
macro-functions in C.

Nonetheless, many application formalisms cannot
be reduced to standardized library or border on what
could be considered edge cases for those libraries and
not as optimized as more general cases. Orio (Hartono
et al., 2009) is an autotuning framework that has an
approach close of that of BOAST but they are based
on an annotated DSL describing loop transformations
rather than a more generic EDSL. Halide (Ragan-
Kelley et al., 2013) is an autotuning framework dedi-
cated to image processing. It can also be used to
describe other operations on memory buffers. Those
two frameworks propose automated search space
exploration to find the best version of a kernel. LGen
(Spampinato and Piischel, 2015) is a compiler that

generates linear algebra programs for small fixed size
problems. Knowing the problem size, it fully unrolls
and vectorizes loops, yielding better performance than
state-of-the-art generic implementations.

6.2. Kernel description DSL

The idea to describe computing kernels using a DSL
has been already explored. SPIRAL (Piischel et al.,
2004) is a decade old generation framework for signal
processing. It uses a proprictary DSL called SPL
(Signal Processing Language), to describe a DSP algo-
rithm. This DSL is then transformed into efficient pro-
grams in high-level languages such asC or Fortran.
POET (Yi et al., 2007) also uses a DSL to describe cus-
tom code transformations, such asloop unrolling, loop
blocking, and loop interchange. Those transformations
can be parametrized in order to tune the application.
Orio (Hartono et al., 2009) can be compared to POET
as it aims at describing possible code transformations
using a DSL. All those approaches are very different
from ours as they put the emphasis on compilation
techniques whereas BOAST relies on the user to express
the different optimizations.

Halide (Ragan-Kelley et al., 2013) is closer in some
ways to our approach as it uses an embedded C+ +
DSL to describe the image processing algorithm. This
DSL allows decoupling the algorithm description from
its scheduling. Each pixel in the resulting image has a
completely defined dependency tree with regard to pix-
els in the input image (and intermediary results).
During generation, depending on memory and comput-
ing cost, some values are recomputed rather than
fetched from memory. We used Halide to implement
the magicfilter of BigDFT, but unfortunately results
were four to five times slower than the one we obtained
with BOAST. We speculate that the three-dimensional
nature of our convolutions, as well as the filter length,
can be considered edge cases in Halide and quite far
from the intended target.

BEAST (Anzt et al., 2015) is an autotuning frame-
work that uses macro-processing in source files. Inside
the macros, BEAST offers a DSL that can be used to
specify values derived from a set of iterators. Those
iterators explore the search space and can be con-
strained. Great care has been used to ensure that the
iterators enumeration as well as the pruning are as effi-
cient as possible.

Heterogeneous Programming Library (HPL; Vidas
et al., 2013)is may be the most similar to BOAST. It is
an autotuning kernel library in C+ + that targets
OpenCL. It uses an EDSL in C+ + to describe generic
computing kernels. Like when using BOAST, optimiza-
tion is left to the users and written directly using the
EDSL. The syntax is very close to real C+ + with the
classical control structures having a trailing underscore.

Videau et al.

15

But whereas BOAST re-interprets the same code while
changing the environment, in HPL each expression is
stored in a tree and the tree is reevaluated in a different
environment.

6.3. Optimization space pruners

Once autotuning techniques are used, the parameter
space explodes and the systematic sampling rapidly
becomes impossible to achieve. The cost of finding the
optimal kernel parameters and environment parameters
(compiler flags, used language, etc.) is rapidly prohibi-
tive. Dedicated frameworks have been developed to
address this problem. Adaptive Sampling Kit (ASK; de
Oliveira Castro et al., 2013) is one such tool. It reduces
the number of samples needed by creating a model of
the performance and by minimizing the number of sam-
ples needed to find the parameters of this model. Several
models and sampling techniques are implemented.

Collective Mind (Fursin et al., 2014) proposes simi-
lar techniques to solve the problem but also stores and
the results and complete experimental setups in data-
bases for future reference and reproducibility. This
database approach also enables easy parallelization of
the experimental process. Collective Mind also pro-
poses collections of flags for many available compilers/
versions easing the exploration process.

7. Conclusion and future works

Application portability is an important issue that
should be solved efficiently, especially given the large
number of different processors now available for
today’s supercomputers. The work needed to get per-
formance portability is a tedious task, even for experi-
enced programmers. The availability of semiautomatic
tools is therefore mandatory for the development of
large simulation applications. Computing kernels’ iden-
tification and optimization has to be carefully per-
formed as they usually consume most of the computing
resources.

In this article, we presented the BOAST infrastruc-
ture (DLS and runtime) that aims at describing kernels
in a high-level language and allows the comparison of
the performance of different versions of the code in a
simple and seamless way. We described its application
to three use cases from the Mont-Blanc project. Results
are encouraging as BOAST proved to be a powerful
and flexible tool that allowed gains in performance
compared to hand-tuned codes. Performance portabil-
ity of those codes is also improved.

Future development will focus on three main goals.
First, we find interesting to interface it with binary
analysis tools like MAQAO (Djoudi et al., 2005) in
order to build a feedback loop to guide optimization.
On the autotuning side, interfacing with search space

modellers/pruners in order to optimize the search of
the optimal version of a kernel will allow us to gain
some time in the optimization process. Finally, work
should also continue on improving the support for vec-
tor codes. For instance, producing a collection of small
to medium useful vector patterns (transposition, for
instance) in BOAST could really help users develop
vectorized version of their algorithm. Other computing
kernels and applications will also be ported on various
architectures.

Acknowledgements

The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreements 288777
and 610402.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this

paper.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this paper.

Note

1. SPECFEM3D GLOBE—CIG http://www.geodynamic-
s.org/cig/software/specfem3d-globe.

References

Adeniyi-Jones C. Optimal Compute on ARM Mali GPUs.
Available at: http://www.cs.bris.ac.uk/home/simonm/mon-
tblanc/OpenCL on Mali.pdf (accessed 1 December 2016).

Allen JR and Kennedy K (1984, June) Automatic loop inter-
change. In: ACM SIGPLAN Notices, vol. 19(6), pp.
233-246. Montreal, Canada: ACM.

Anderson E, Bai Z, Bischof C, et al. (1999) LAPACK Users’
Guide, 3rd ed. Philadelphia: Society for Industrial and
Applied Mathematics.

Anzt H, Haugen B, Kurzak J, et al. (2015) Experiences in
autotuning matrix multiplication for energy minimization
on GPUs. Concurrency and Computation: Practice and
Experience 27(17): 5096-5113. DOI:10.1002/cpe.3516.

Cronsioe J, Videau B and Marangozova-Martin V (2013)
BOAST: bringing optimization through automatic source-
to-source transformations. In: Tomohiro Y (ed) 2013 IEEE
7th International Symposium on Embedded Multicore SoCs
(MCSoC), Tokyo, Japan, September, pp. 129-134. IEEE.

Dagum L and Menon R (1998) OpenMP: an industry stan-
dard API for shared-memory programming. Computa-
tional Science & Engineering IEEE 5(1): 46-55.

de Oliveira Castro P, Petit E, Farjallah A, et al. (2013) Adap-
tive sampling for performance characterization of applica-
tion kernels. Concurrency and Computation: Practice and
Experience 25(17): 2345-2362.

16 The International Journal of High Performance Computing Applications 00(0)

Djoudi L, Barthou D, Carribault P, et al. (2005) Exploring
application performance: a new tool for a static/dynamic
approach. In: Proceedings of the 6th LACSI Symposium,
October 2005.

Dongarra JJ, Du Croz J, Hammarling S, et al. (1990) A set of
level 3 basic linear algebra subprograms. ACM Transac-
tions on Mathematical Software (TOMS) 16(1): 1-17.

Fursin G, Miceli R, Lokhmotov A, et al. (2014) Collective
Mind: towards practical and collaborative auto-tuning.
Scientific Programming 22(4): 309-329. Available at: https:
//hal.inria.fr/hal-01054763.

Genovese L, Neelov A, Goedecker S, et al. (2008) Daubechies
wavelets as a basis set for density functional pseudopoten-
tial calculations. The Journal of Chemical Physics 129(1):
2008.

Genovese L, Ospici M, Deutsch T, et al. (2009) Density func-
tional theory calculation on many-cores hybrid central
processing unit-graphic processing unit architectures. The
Journal of Chemical Physics 131(3): 2009.

Genovese L, Videau B, Ospici M, et al. (2010) Daubechies
wavelets for high performance electronic structure calcu-
lations: the BigDFT project. In: Catherine B (ed)
Compte-Rendu de I’Académie des Sciences, Calcul Inten-
sif. France: Académie des Sciences.

Goedecker S (1993) Rotating a three-dimensional array in an
optimal position for vector processing: case study for a
three-dimensional fast fourier transform. Computer Phy-
sics Communications 76(3): 294-300.

Hartono A, Norris B and Sadayappan P (2009) Annotation-
based empirical performance tuning using orio. In: Pro-
ceedings of the 23rd IEEE International Parallel & Distrib-
uted Processing Symposium, Rome, Italy, Preprint ANL/
MCS-P1556-1008. Available at: http://www.mcs.anl.gov/
uploads/cels/papers/P1556.pdf

Hudak P (1996) Building domain-specific embedded lan-
guages. ACM Computing Surveys 28(4): 1-6.

Khronos OpenCL consortium. OpenCL: Open Computing
Language. Available at: http://www.khronos.org/opencl/
(accessed 1 December 2016).

Komatitsch D (2011) Fluid-solid coupling on a cluster of
GPU graphics cards for seismic wave propagation. Comp-
tes Rendus Mécanique 339(2): 125-135.

Lawson CL, Hanson RJ, Kincaid DR, et al. (1979) Basic lin-
ear algebra subprograms for FORTRAN usage. ACM
Transactions on Mathematical Software (TOMS) 5(3):
308-323.

Matsumoto Y and Ishituka K (2002) Ruby Programming Lan-
guage. Boston, Massachusetts: Addison Wesley Publishing
Company.

MPI (2012) The Message Passing Interface (MPI) Standard.
Available at: http://www.mcs.anl.gov/research/projects/
mpi/ (accessed 1 December 2016).

Mucci P, Browne S, Deane C, et al. (1999) PAPI: a portable
interface to hardware performance counters. In: Proceed-
ing Dept of Defense HPCMP Users Group Conference, pp.
7-10. Citeseer.

NVIDIA (2011) NVIDIA Compute Unified Device Architec-
ture. Available at: http://www.nvidia.com/object/cuda
home new.html (accessed 1 December 2016).

Piischel M, Moura JM, Singer B, et al. (2004) SPIRAL: a
generator for platform-adapted libraries of signal process-
ing algorithms. International Journal of High Performance
Computing Applications 18(1): 21-45.

Ragan-Kelley J, Barnes C, Adams A, et al. (2013) Halide: a
language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. ACM
SIGPLAN Notices 48(6): 519-530.

Soliman MI (2009) Performance evaluation of multi-core intel
xeon processors on basic linear algebra subprograms. Par-
allel Processing Letters 19(01): 159-174.

Spampinato DG and Piischel M (2014) A basic linear algebra
compiler. In: David RK and Tipp M (eds) Proceedings of
Annual IEEE|ACM International Symposium on Code Gen-
eration and Optimization, Orlando, FL, USA, February
2014, p. 23. ACM.

Top500.0rg. Top500. Available at: http://www.top500.org
(accessed 1 December 2016).

Videau B, Marangozova-Martin V, Genovese L, et al. (2013)
Optimizing 3D convolutions for wavelet transforms on
CPUs with SSE units and GPUs. In: Euro-Par 2013 Paral-
lel Processing, Aachen, Germany, August 2013, pp. 826—
837. Springer.

Vinas M, Bozkus Z and Fraguela BB (2013) Exploiting het-
erogeneous parallelism with the heterogeneous program-
ming library. Journal of Parallel and Distributed Computing
73(12): 1627-1638.

Whaley RC and Petitet A (2005) Minimizing development
and maintenance costs in supporting persistently
optimized BLAS. Software: Practice and Experience 35(2):
101-121.

Wolf ME and Lam MS (1991) A loop transformation theory
and an algorithm to maximize parallelism. /EEE Transac-
tions on Parallel and Distributed Systems 2(4): 452—471.

Wolfe M (1986) Loops skewing: the wavefront method revis-
ited. International Journal of Parallel Programming 15(4):
279-293.

Ye D, Titov A, Kindratenko V, et al. (2012) Porting optimized
GPU kernels to a multi-core CPU. In: Gregory P (ed) Sym-
posium on Application Accelerators in High-Performance
Computing, Knoxville, TN, USA, September 2012, IEEE.

Yi Q, Seymour K, You H, et al. (2007) POET: Parameterized
optimizations for empirical tuning. In: Timothy MP (ed)
Parallel and Distributed Processing Symposium 2007.
IPDPS 2007, Long Beach, CA, USA, March 2007, IEEE
International, pp. 1-8. IEEE.

Author biographies

Brice Videau received the M.Eng. degree in chemistry
from ENSCM, Montpellier, France, in 2003, the
M.Eng. degree in computer science from ENSIMAG,
Grenoble, France, in 2004, and the Ph.D. degree in
computer science from UJF Grenoble 1, Grenoble, in
2009. Since 2010, he has been a Postdoctoral Fellow
with the L_Sim Laboratory, INAC, CEA and with the
CNRS at Grenoble. He is working on code generation,
optimization and auto-tuning for High Performance

Videau et al.

17

Computing and does so in several European projects
(Mont-BLanc, HPC4E, EoCoE).

Kevin Pouget received his Computer Science Ph.D.
degree from the University of Grenoble in 2014, for his
work on interactive debugging for multicore and
embedded systems. He now pursues his research work
at the University as a Post-doctoral fellow, with a focus
on OpenMP debugging. Through his experience, he got
an advanced knowledge of the low-level aspects of pro-
gramming languages, runtime libraries and their inter-
actions with the operating systems.

Luigi Genovese is a Computational Physicist in the
domain of Material Sciences, with education in
Theoretical High Energy Physics. He is presently
Researcher at the Laboratoire de Simulation Atomistique
in CEA Grenoble, His research interests are related to the
conception, development, and implementation of new the-
oretical algorithms and methods exploiting state-of-the-art
computing resources, enabling large-scale computations in
diverse areas of Solid-State physics, Quantum Chemistry
and Electronic Structure calculations.

Thierry Deutsch is a Research Director at the institute
Nanosciences and Cryogeny (INAC, CEA) in
Grenoble. He is a specialist of high performance com-
puting in the field of solid state physics. He has devel-
oped some softwares as BigDFT and CPMD based on
Schrodinger equations and the Density Functional

Theory to calculate the electronic structure of materials
or molecules.

Frédéric is a Chief Senior Research Scientist at Inria
and holds a position at the LIG laboratory (UGA,
Grenoble, France) in the Corse research team. He is
also Deputy Scientific Director at Inria. He received
his PhD in C.S. from Institut National Polytechnique
de Grenoble, France, in 1994 and his MS in C.S. from
ENS Lyon in 1990. His research interests include paral-
lel high performance computing algorithms and sche-
duling for large scale distributed platforms. He leads
the Grid’5000 project, which offers a platform to evalu-
ate large scale algorithms, applications, and middle-
ware systems. See https://fdesprez.github.io/ for further
information.

Jean-Francois Mehaut is professor of Computer
Science at Universite Grenoble Alpes (UGA). His
fields of interest in research are high performance com-
puting, runtime systems and debugging tools. In par-
ticular, Jean-Francois Mehaut 1is interested in
alternative and low power architectures to build the
future exascale platforms. He was involved during 6
years in the European Mont-Blanc projects. Jean-
Francois Mehaut has also several scientific collabora-
tions with Brazilian Universities (UFRGS, USP, PUC,
UFSC, LNCC). These collaborations are developed
and funded by several scientific projects (H2020
Europe Brazil, Capes, CNPq).

