
UNIVERSITÉ GRENOBLE - ALPES

NANO2017 DEMA

SP 1—Interactive Debugging

Délivrable D1 :
Intégration d’OpenMP 3.0

Kevin Pouget, Jean-François Méhaut
Équipe LIG/INRIA CORSE

January 7, 2016

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 2/35

Contents

1 Introduction 5

2 Representing and Controlling Fork-Join Applications 7
2.1 Internal Representation of OpenMP Executions Model 7

2.1.1 representation classes . 8
2.1.2 capture module . 8
2.1.3 libmcgdb: a Preloaded Helper for the capture Module 9

2.2 Interactions with Fork-Join Applications 12
2.2.1 Execution representation . 12
2.2.2 Execution control . 14

3 Execution Representation with Sequence Diagrams 17
3.1 Diagram Semantic . 17
3.2 Diagram Examples . 18

3.2.1 Parallel Zone . 18
3.2.2 Single Zone . 19
3.2.3 Critical Zone . 20
3.2.4 Task Execution . 21

3.3 Implementation and Connection with mcGDB 21

4 Conclusion 25

References 27

A Appendix 29
A.1 Access to Source-Code . 29

A.1.1 Download . 29
A.1.2 Installation . 30
A.1.3 Compile libmcgdb-omp . 31
A.1.4 OpenMP environment . 31
A.1.5 Test, Benchmark and Documentation 33
A.1.6 OpenMP Sequence Diagram . 34

A.2 OpenMP Parallel Zone Example . 35

3

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 4/35

Chapter 1

Introduction

In this document, we detail the work we carried out for the deliverable D1 of NANO

2017 DEMA / Interactive Debugging sub-project.
OpenMP [2] is the specification1 of a runtime environment for shared memory

parallel programming, based on the fork-join programming model. This specification
is used more and more often to exploit the computing power of multi-core processors.

OpenMP provides an advanced methodology to develop parallel application,
however it does not provide any help for the debugging part of the development
process. Worth, it even confuses tools such as source-level interactive debuggers.
Indeed, these tools often work natively only at binary and language level and miss
in important part of the high-level execution semantic. In the case of OpenMP, the
confusion is actually one step above, because it relies on compiler transformations.
This means that the code executed around OpenMP pragmas is not strictly equivalent
to the one written in the application source files.

Our prior work [7] introduced the concept of “programming-model centric”
source-level interactive debugging as an extension of the traditional language-level
interactive debugging. The idea was to integrate into debuggers the notion of “pro-
gramming models”, as abstract machines running over the physical ones. These
abstract machines, implemented by runtime libraries and programming frameworks,
provide the high-level primitives required for the implementation of today’s parallel
applications.

The idea of programming model is to implement in debuggers functionalities
related to these abstract machines. In particular, they should 1/ provide a struc-
tural representation of the architecture, 2/ monitor the dynamic behaviors such as
communications, and 3/ help users interacting with the abstract machine.

We developed a proof-of-concept, mcGDB, as a Python extension of GDB, the
debugger of the GNU project.

1In the rest of this report, we use OpenMP to refer to any runtime environment implementing the
standard. For particular cases, we explicitly use the environment name.

5

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

In this deliverable, we extend programming-model centric debugging and MCGDB
to encompass OpenMP fork-join programming model. The contribution is divided
into two aspects, presented in the following chapters of this document:

1. new functionalities to control OpenMP fork-join parallel programming

2. a sequence diagram representation of the OpenMP execution

The procedure to retrieve mcGDB source code, part of this deliverable, is described
in Annex A.1.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 6/35

Chapter 2

Representing and Controlling Fork-Join Applications

The first difficulty that developers face when using an interactive debugger to study
OpenMP applications is that the tools are not aware of the fork-join paradigm used
in the execution. Instead, they only show the application as a multi-threaded process
that, in the middle of runtime-specific functions, executes the application source
code. This execution representation can be called multi-sequential, as, from the
debugger point-of-view, there is no interaction between the different threads. Our
goal in the part of the work was to shift this representation towards a more appropriate
fork-join representation.

2.1. INTERNAL REPRESENTATION OF OPENMP EXECUTIONS MODEL

The first step of the design of a programming-model centric debugger consists
in the capture and interpretation of execution events, in order to build an internal
representation of the state of the application. This internal representation will later
be used by all the user-facing functionalities of the model-centric debugger.

Figure 2.1.1: mcGDB internal organization

7

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

2.1.1 representation classes

The classes from the representation module represent the core of the OpenMP
debugger support. Events coming from the capture module will call them all along
the application execution, and commands from the interaction modules will rely
on them to provide model-level functionalities to the user interface(s). Fig 2.1.1
pictures this organization. Package capture is introduced in the following subsection
and in Delivrable 3, Section 2.1 (Aspect-Oriented Programming); and interaction
modules are described in the two subsequent chapters and in Delivrable 3, Section 2.2
(Multi-runtime support).

The documentation of these classes can be found in the website of mcGDB online
documentation, as well as a link to the corresponding source code. As an example,
the classes reflecting OpenMP single zones and barriers look as follows:

class SingleJob(Job):
def __init__(self, worker, parallel_job): ...
def enter(self, inside, worker): ...
def finished(self): ...
def completed(self): ...

class Barrier(Job):
def __init__(self, parallel_job, worker, single=None): ...
def reach_barrier(self, worker, location):

if self.single and self.single.visitor is worker:
self.single.finished()

def leave_barrier(self, worker):
def completed(self):

if self.single:
self.single.completed()

...

Inside these classes, only a minimal tracking is done: we only store the informa-
tion required to tell which worker did the single zone job, which workers reached it, if
they all left, etc.

2.1.2 capture module

The capture module is the interface between the OpenMP implementation-generic
code and the different OpenMP runtime implementations. As of today, this module
is implemented for GNU GOMP [5], Intel OpenMP [1] and partially for OMPSS [4].

To continue the previous example with the single zone and barriers, in GOMP
we use the following functions to update the internal representation:

capture the semantic of ‘bool GOMP_single_start(void)‘
(returns 1 if thread is allowed inside)

class GOMP_single_start_Breakpoint(OmpFunctionBreakpoint):

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 8/35

CHAPTER 2. REPRESENTING AND CONTROLLING FORK-JOIN APPLICATIONS

def __init__(self):
OmpFunctionBreakpoint.__init__(self, "GOMP_single_start")

def prepare_after (self, data):
ret = int(my_archi.return_value(my_archi.INT))

gives current single zone or creates it if first
single = SingleJob.get_single_zone(current_worker())

inside = ret == 1
single.enter(inside, current_worker())

capture the semantic of ‘GOMP_barrier (void)‘
returns after the barrier has completed

class GOMP_barrier_Breakpoint(OmpFunctionBreakpoint):

def __init__(self):
OmpFunctionBreakpoint.__init__(self, "GOMP_barrier")

def prepare_before (self):
barrier = Barrier.get_barrier(current_worker())

barrier.reach_barrier(current_worker(), fname_lineno())

...

def prepare_after (self, data):
...
barrier.leave_barrier(current_worker())

In Intel OpenMP and OMPSS, for these two functions, the code is identical: only
the symbol name differs. The capture code of task or parallel zone creation varies
more from one runtime to another.

2.1.3 libmcgdb: a Preloaded Helper for the capture Module

There are multiple ways to implement the information capture required for model-
centric debugging. Our choice is to use debugger breakpoints and memory inspection
to gather all the information we need. However, one limit of this approach is that it is
hard to control precisely and independently the thread executions. For instance, “stop

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 9/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

all the threads at that location” is hard to implement in GDB and Python GDB1,2.
We describe later the command omp start (Section 2.2.2), that continues the

execution until all the threads are at the beginning of a parallel zone. This command
precisely requires such a control of GDB.

To solve this problem, we preload a shared library into the application address-
space. This library has to implement the OpenMP runtime internal API, that is
unfortunately not necessarily public or with long term stability. The functions im-
plementing this API are inserted between the application and the OpenMP runtime
library by the dynamically linker (with the LD_PRELOAD environment variable). They
usually only perform simple operations for the debugger (emit event or block threads
with infinite loops), and then forward the function call to the real implementation.

As an example, the interception function used to implement omp start looks as
follows:

void
GOMP_parallel (void *(*fn) (void *), void *arg,

unsigned num_threads, unsigned int flags) {
struct trampoline_data *data;

init_gomp_preload();

data = malloc(sizeof(*data));
data->routine = fn;
data->arg = arg;

real_GOMP_parallel (GOMP_parallel_trampoline, data,
num_threads, flags);

free(data);
}

Function GOMP_parallel is called by the application when a #pragma omp
parallel is reached. It initializes the preloaded library, then overrides the function
arguments to divert the worker executions towards GOMP_parallel_trampoline:

void
GOMP_parallel_trampoline(void *arg) {

struct trampoline_data *data = (struct trampoline_data *) arg;

thread_debug.can_run = 1;
thread_debug.initialized = 1;

mcgdb_thread_can_run(&mcgdb_can_pass_parallel);

1This is different from “stop each time a thread passes at that location”, which is a standard GDB
operation.

2Non-stop debugging [8] mode of GDB may help in that purpose, but its Python support is not mature
enough to support our model-centric debugging framework.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 10/35

CHAPTER 2. REPRESENTING AND CONTROLLING FORK-JOIN APPLICATIONS

/* Do not add anything here, mcGDB steps into data->routine(). */

data->routine(data->arg);
}

In this second function, we initialize thread-specific data, then we test if the
thread is allowed to enter the parallel zone:

void
mcgdb_thread_can_run(volatile int *can_pass) {

while (!thread_debug.can_run);

while (can_pass != NULL && ! *can_pass);
}

Function mcgdb_thread_can_run is watched by mcGDB. At the beginning of
the command omp start, mcgdb_can_pass_parallel is set to 0, and hence the
threads will infinite loop in that function. Each time a thread enters mcgdb_thread_
can_run, a counter is increased in mcGDB. When all the threads are busy waiting,
mcGDB switches mcgdb_can_pass_parallel to 1, but does not continue the exe-
cution. Instead, it instructs each thread to sequentially perform a finish (finish
the current function, mcgdb_thread_can_run) and a step (step inside the next
function), which leads them to the first line of parallel zone (the function behind
data->routine(data->arg)).

After the execution of this algorithm, all the workers are stopped at the beginning
of the parallel zone.

Thread blocked function We also use libmcgdb to implement a “thread blocker”
function. This function is rather simple, it only consists in an infinite loop:

void
__thread_blocker(void) {

/* This thread/task is blocked by mcGDB.
* Do not try to exit manually this function,
* it would compromize your execution. */

while(1);
}

During the library initialization, mcGDB looks up the address of the symbol
__thread_blocker. Then, for instance to implement task blocking (see Delivrable 3,
Section 1.4.2 #Task blocking), mcGDB set the thread I P register (instruction pointer)
to this address (and an offset in x86). As a result, the thread executes the infinite loop,
and its normal execution is stopped. Upon unblock request, mcGDB restores the
original I P value, and the thread continues its normal execution.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 11/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

2.2. INTERACTIONS WITH FORK-JOIN APPLICATIONS

2.2.1 Execution representation

In order to understand the current state of the application, developers must have a
straightforward way to see the location of the different workers3. We implemented dif-
ferent commands in that regard that present a more suitable (tree-shaped) stacktrace,
and overviews of workers position and OpenMP tasks. More advanced execute repre-
sentation engines (assisted with visualization tools) are presented in the subsequent
chapters.

Tree-shaped backtraces

An OpenMP backtrace (also called stacktrace or callstack) representation is not linear
(multi-linear), as sequential (multithreaded) application backtraces, but rather tree-
like. This representation has already been applied to SPMD applications (like MPI),
where it is straightforward to implement: all the MPI processes start from the same
main function, then at some points the execution flows diverge, based on their
process rank or data they received.

OpenMP tree backtraces are harder to implement, because the application’s
threads/workers do not really share their backtrace. The connection is only logical:
within the OpenMP runtime, threads/workers wait for work to be executed, for
instance a parallel zone, then they jump into the application code and carry out the
task.

Here is an example running the code of Annex A.2, with first our tree callstack
(omp where), then GDB multi-sequential callstacks (thread apply all where).

(gdb) omp where
main () at parallel-demo.c:5

#pragma omp parallel
#parallel zone #1 of main
+ at parallel-demo.c:13 [Thread 2]
+ at parallel-demo.c:10 [Thread 3,4]

#pragma omp single_start [Thread 1]

(gdb) thread apply all where

Thread 4 (Thread 0x7ffff61ed700 (LWP 16923)):
#1 #parallel zone #1 of main () at parallel-demo.c:10

Thread 3 (Thread 0x7ffff69ee700 (LWP 16922)):
#0 #parallel zone #1 of main () at parallel-demo.c:10

3Workers are the support of fork-join code execution. They are usually implemented with long-life
threads. In this report we distinguish one from the other in so that workers only execute “application tasks”
and “disappear” afterwards. Threads, as seen by GDB (and the OS) remain all the time.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 12/35

CHAPTER 2. REPRESENTING AND CONTROLLING FORK-JOIN APPLICATIONS

Thread 2 (Thread 0x7ffff71ef700 (LWP 16921)):
#0 #parallel zone #1 of main () at parallel-demo.c:13

Thread 1 (Thread 0x7ffff7fc3780 (LWP 16917)):
#0 #pragma omp single_start ()
#1 #parallel zone #1 of main () at parallel-demo.c:10
#3 #pragma omp parallel ()
#5 main () at parallel-demo.c:5

We can also notice in this output that 1/ some frames were omitted and 2/
OpenMP pragma appears in the callstack. This cleanup and rewriting was done
with GDB/Python’s ability to filter and decorate frames. With the help of mcGDB
OpenMP knowledge, we can enrich the stack trace with model-level information,
as in Thread 1 Frame 1. For this thread , the “language-level” callstack looks as
follows:

(gdb) where no-filter
#0 GOMP_single_start () at /build/gcc-5.2.0/libgomp/single.c:40
#1 in main._omp_fn.0 () at parallel-demo.c:10
#2 in GOMP_parallel_trampoline (...) at gomp_preload.c:62
#3 in GOMP_parallel (...) at .../libgomp/parallel.c:168
#4 in GOMP_parallel (...) at gomp_preload.c:75
#5 in main () at parallel-demo.c:5

We can also notice with GDB Frame 2 and 4 that libmcgdb frames (source file
gomp_preload.c) where elided from the stack output.

Worker position overview

To give a quick overview of the state of the OpenMP abstract machine, mcGDB
command info workers shows the current position of OpenMP workers, in terms
of parallel zones:

(gdb) info workers
> Worker #1: ParallelJob #1 > CriticalJob #1

Worker #2: ParallelJob #1 > Barrier #1
Worker #3: ParallelJob #1
Worker #4: ParallelJob #1 > Barrier #1

Task overview

This command lists the OpenMP tasks instantiated in OpenMP abstract machine. We
comeback with further details and explanation on OpenMP task support in Deliv-
rable 3, Chapter 1.

(gdb) info task 3 +src +deps
#3 TaskJob #3

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 13/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

debug_state: created
sources: minimal_omp_threads.c:42-43
Input dependencies:
i (0x7fffffffe370) from TaskJob #1 (not ready)
j (0x7fffffffe360) from TaskJob #2 (not ready)
k (0x7fffffffe35c) from TaskJob #2 (not ready)

Output dependencies:
i (0x7fffffffe370) to TaskJob #5
j (0x7fffffffe360) to TaskJob #9
k (0x7fffffffe35c) to TaskJob #10

--
42 #pragma omp task depend(in:i,y,z) depend(out:i,y,z)
43 foo1(&i, &y, &z);
--

We can see in this output that Task 3 was just created. It has three input and
output dependencies, and it corresponds to two lines from the application source
code.

Execution visualization

Visualization is an important aspect of our work, as it greatly helps understanding
the current state of the execution. We detail two visualization engines in the next
parts, one for OpenMP parallel zones (Chapter 3), and the other more focused on
OpenMP 4.0 tasks (Delivrable 3, Chapter 1).

2.2.2 Execution control

In this subsection, we detail the different commands we implemented in mcGDB to
support OpenMP execution control. Theses commands illustrate the capabilities of
mcGDB/OMP, but they could be extended and/or combined in a later effort to tackle
more efficiently user needs.

General commands

omp start Continues the execution until the beginning of the first parallel zone. This
command relies on libmcgdb_omp.

omp next <zone> Continues the execution until the next given OpenMP zone. <zone>
can be single, critical, task, sections, barrier or master.

omp step Continues the execution until one thread starts working on a new zone.

omp all_out Continues the execution until all the threads are right after the current
zone. This command relies on libmcgdb_omp.

omp schedule all|single Alias of GDB’s scheduler-locking parameter. With value
single/on, only the current thread is allowed to run. With value all/off, all

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 14/35

CHAPTER 2. REPRESENTING AND CONTROLLING FORK-JOIN APPLICATIONS

the threads can run. The default (all/off) behavior may appear confusing in
some situations, in particular during GDB next command. While the current
thread tries to reach the next source-code line, the other threads (briefly) con-
tinue their execution. They may hence hit breakpoints or output text messages.
The single/on behavior can also introduce artificial locks, for instance if the
thread waits on a busy resource.

Zone-specific commands

Sections

omp sections new Catchpoint on the beginning of section zones.

omp sections step-by-step Catchpoint on sections’ execution, to execution each
section one by one. Activates GDB’s scheduler-locking for the zone and deacti-
vates it afterwards.

omp sections finish Continues the execution until the end of the section zone.

Critical sections

omp critical next Continues the execution until the next thread enters the critical
zone, to execute it step by step.

Barriers

omp barrier pass Continues the execution until all the threads are right after the
current barrier. This command relies on libmcgdb_omp.

Tasks

omp task break [all|next] Catchpoint on the beginning of the execution of all the
tasks, or just the next one.

In the following part, we introduce a sequence diagram representation of the
OpenMP execution, that aims at helping user to have a better and quicker under-
standing of the current state of the application execution.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 15/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 16/35

Chapter 3

Execution Representation with Sequence Diagrams

When debugging an application, it is important that developers have a quick and
accurate understanding of the current state of the execution. Indeed, if each time they
pause the application execution, they waste seconds in understanding the current
state, they may easily loose track of their debugging guideline. They should rather
have a straightforward way to review it, such as what the callstack provides for simple
sequential applications.

In OpenMP, two difficulties are combined: first, the callstack is messy because
of the entanglement between application frames, compiler-outlined frames and
OpenMP runtime frames. Second, all the threads are supposed to execute more or
less the same code (SPMD paradigm), but this is not reflected in the usual display of
the callstack.

In this chapter, we introduce a visual representation of the current location of
OpenMP workers, within the OpenMP zones. This representation is inspired from
UML sequence diagrams [3]. These diagrams show the interaction over the time
between different actors. The semantic of our diagram is distinct from the UML’s, but
the idea and general shapes are shared.

3.1. DIAGRAM SEMANTIC

An actor corresponds to an OpenMP worker. Its background color indicates that ...

Orange the worker is currently selected in GDB command-line interface,

Red the worker is selected and GDB scheduler-locking is enabled (see Sec-
tion 2.2.2).

White the worker is not selected.

A box corresponds to an OpenMP zone. It covers the workers bound to that zone1,2.

1The diagram shows the current state of the execution, and its artifacts. Hence, a worker may be about
to enter the zone, but not yet in. That may appear counter-intuitive.

2There is an unsolved problem with that representation, for instance if Worker 1 and 3 are in the zone,
but not Worker 2. Currently, the box would incorrectly cover Worker 2.

17

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

A red-cross arrow indicates the current location of the worker3.

An activity box indicates that the worker did execute application code inside the
zone. The box superposition indicates the zone nesting level.

A self-referencing arrow indicates the beginning or end of a particular task. That
task can be an OpenMP task, but also a section, a critical zone, etc.

A traversing arrow indicates an execution flow transfer, for instance within critical
regions.

A box-long double strike indicates a barrier. If workers are blocked inside that bar-
rier, they will appear between two double strikes (<Barrier>..</Barrier>).
Likewise, if a worker executes a task during its wait, the task will be plotted
within the barrier.

3.2. DIAGRAM EXAMPLES

The subsections below present example of sequence diagrams for different OpenMP
zones. They correspond to the execution of the code in Annex A.2.

3.2.1 Parallel Zone

Figure 3.2.1: mcGDB sequence diagram of a parallel zone

3There is an unsolved problem with that representation, if Worker 1 is in a barrier, and Worker 2 is before
the barrier, Worker 2 position may be plotted after the barrier.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 18/35

CHAPTER 3. EXECUTION REPRESENTATION WITH SEQUENCE DIAGRAMS

3.2.2 Single Zone

Figure 3.2.2: mcGDB sequence diagram of a single zone and its implicit barrier

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 19/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

3.2.3 Critical Zone

Figure 3.2.3: mcGDB sequence diagram of a critical zone

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 20/35

CHAPTER 3. EXECUTION REPRESENTATION WITH SEQUENCE DIAGRAMS

3.2.4 Task Execution

Figure 3.2.4: mcGDB sequence diagram of two task executions

3.3. IMPLEMENTATION AND CONNECTION WITH MCGDB

Our OpenMP sequence diagram visualization engine is based on seqdiag [6],
an open source tool published under Licence Apache 2.0. It takes as input a text file
describing the diagram to plot. This idea is similar and inspired by GraphViz DOT

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 21/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

language.
As an example, here is a commented version of the text file that generated

Fig. 3.2.2:

{
1; 2; 3; 4; # list of the application workers

group { 3; } # worker to highlight

1 -> 1 [leftnote="main"];

parallel {
4; 3; 2; 1; # workers inside the zone

single {
4; 3; 2; 1;

3 -> 3 [label="enter"]; # beginning/end of
3 <- 3 [label="exit"]; # single activity box

=== <Barrier 1> ===
4 -> 4 [here]; 3 -> 3 [here];
2 -> 2 [here]; 1 -> 1 [here];
=== </Barrier 1> ===

}
}
1 <- 1 [narrow] # finish the ‘main’ activity box

}

We introduced important changes in seqdiag to support our vision of concurrent
activity diagrams. In particular, it was mandatory for us that activities could occur in
parallel, whereas UML semantic is more oriented towards sequential control transfers.
Our semantic for parallel zone boxes also differs from UML, as we wanted workers
activity box to start and stop automatically at the upper and lower boundary of the
parallel box.

The diagram description is generated by mcGDB from its internal representation
of the OpenMP execution events. Python module openmp.interaction.sequence
is hooked with module openmp.representation through our aspect interface (dis-
cussed in Delivrable 3, Section 2.2). This design creates no dependency between the
core module openmp.representation and the optional ones from openmp.inter-
action.*.

In openmp.interaction.sequence, we maintain another internal representa-
tion of the OpenMP execution, oriented towards the plotting of the diagram descrip-
tion. Each time the main representation is updated, the sequence diagram hooks are
called, and the second representation is updated as needed.

In mcGDB command-line interface, the diagram generation is concealed behind
one command and one parameter.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 22/35

CHAPTER 3. EXECUTION REPRESENTATION WITH SEQUENCE DIAGRAMS

Parameter omp-auto-sequence indicates if the sequence diagram should be
redrawn automatically or not. If set, before displaying the promp (and not more
often4), mcGDB will check if the OpenMP internal representation has been updated
(in practice, a flag is switched when an aspect hook is triggered) or if the GDB environ-
ment has changed (currently, the scheduler-locking value and selected thread)
since the last plot, and redraw it if necessary.

Command omp sequence computes the description of the diagram, and, by
default, saves it in run and generates run.svg and run.png images out of it. It
accepts several options to changes its behavior:

--print or --show Implies --no-gen. Print to the screen the diagram description.

--no-gen Do not trigger the image generation.

--open Implies --sync. Open with eog (EyeOfGnome) the png image generated.

--sync Default. Block until images are generated.

--async Do not wait for image generation.

--no-write Do not save to file the diagram description.

--all Plot all the information captured. By default, only the zones containing a worker
are plotted.

Temanejo Visualization interface While we developed the cooperation between
Temanejo graphical interface and mcGDB (detailed in Delivrable 3, Chapter 1), we
also extended Temanejo to support the visualization of our sequence diagram.

The communication between mcGDB and Temanejo is done through a network
socket. Hence GDB can run on an embedded system or on a cluster front-end, while
Temanejo remains on the development desktop.

As of today, Temanejo support for OpenMP sequence diagrams is rather primitive:
it only supports display and automatic refresh. We can imagine, in future versions,
some more cooperation between mcGDB and the diagram representation, such a dis-
playing workers callstack on mouse hover, or switching the active thread by clicking
on the actor box.

In the following chapter, we detail the work we did on for OpenMP task debugging
and visualization. At the end of the chapter, we comeback on the possibilities and
limitations of the cooperation between mcGDB and the of Temanejo task-graph and
sequence diagram visualization engine.

4We believe that a strict update-on-change semantic is not useful for interactive debugging, as it would
introduce an expensive computation cost and slowdown for no real benefits. Nonetheless, this feature
would be trivial to implement.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 23/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 24/35

Chapter 4

Conclusion

In this document, we detailed the deliverable D1 of Nano2017/DEMA sub- project
1 on Interactive Debugging. The source code corresponding to this deliverable is
accessible with the procedure described in Annex A.1.

We introduced the new support of mcGDB for OpenMP 3.0 fork-join program-
ming. This support is divided into two main aspects: 1/ representing and controlling
the execution of fork-join based applications and 2/ representing the fork-join execu-
tion with sequence diagrams.

In the next months of the DEMA project, we will start the investigation on the
possibilities of OpenMP application profiling controlled by an interactive model-
centric debugger (Deliverables D2 qnd D4). We will continue and extend the work on
mcGDB testing and benchmarking to validate its efficiency. We plan to the KaStORS
OpenMP benchmark suite [9] to validate mcGDB implementation and measure its
execution intrusion.

25

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 26/35

References

[1] Intel OpenMP Runtime. https://www.openmprtl.org/.

[2] OpenMP 4.0 standard. http://www.openmp.org/mp-documents/OpenMP4.0.
0.pdf.

[3] UML basics: The sequence diagram. http://www.ibm.com/developerworks/
rational/library/3101.html.

[4] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesus Labarta, Luis Martinell,
Xavier Martorell, and Judit Planas. OmpSs: A proposal for programming hetero-
geneous multi-core architectures. Parallel Processing Letters, 21(02), 2011.

[5] Free Software Foundation (FSF). GOMP – An OpenMP implementation for GCC.
https://gcc.gnu.org/projects/gomp/.

[6] Takeshi KOMIYA. seqdiag - simple sequence-diagram image generator. http:
//blockdiag.com/en/seqdiag/.

[7] Kevin Pouget. Programming-Model Centric Debugging for Multicore Embedded
Systems. PhD thesis, Université de Grenoble, École Doctorale MSTII, feb 2014.

[8] Nathan Sidwell, Vladimir Prus, Pedro Alves, Sandra Loosemore, and Jim Blandy.
Non-stop multi-threaded debugging in gdb. In GCC Developers’ Summit, 2008.

[9] Philippe Virouleau, Pierrick BRUNET, François Broquedis, Nathalie Furmento,
Samuel Thibault, Olivier Aumage, and Thierry Gautier. Evaluation of OpenMP
Dependent Tasks with the KASTORS Benchmark Suite. In 10th International
Workshop on OpenMP, IWOMP2014, 10th International Workshop on OpenMP,
IWOMP2014, Salvador, Brazil, France, September 2014. Springer.

27

https://www.openmprtl.org/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
https://gcc.gnu.org/projects/gomp/
http://blockdiag.com/en/seqdiag/
http://blockdiag.com/en/seqdiag/

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 28/35

Chapter A

Appendix

A.1. ACCESS TO SOURCE-CODE

A.1.1 Download

mcGDB

• http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.
tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git

OMP Seqdiag • http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/
seqdiag.tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/seqdiag.git

• Refer to upstream/readme to install

– http://blockdiag.com/en/seqdiag/

Temanejo

• http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.
tgz

• gitclonegit+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_
mcgdb.git

• Refer to upstream/readme to install

– http://www.hlrs.de/organization/av/spmt/research/temanejo/

Requirements

pip install colorlog pysigset enum34 pyparsing networkx

• Logging

29

http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/mcgdb.tgz
git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/seqdiag.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/seqdiag.tgz
git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/seqdiag.git
http://blockdiag.com/en/seqdiag/
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.tgz
http://dema.gforge.inria.fr/delivrable/2015-12_mcgdb/temanejo-mcgdb.tgz
git clone git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_mcgdb.git
git clone git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/temanejo_mcgdb.git
http://www.hlrs.de/organization/av/spmt/research/temanejo/

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

– Colorlog (recommended)
https://pypi.python.org/pypi/colorlog

• GDB internal thread safety:

– Pysigset (recommended)
https://pypi.python.org/pypi/pysigset/

• Task/OpenMP

– Enum34 (Python2 only)
https://pypi.python.org/pypi/enum34

– pyparsing
https://pypi.python.org/pypi/pyparsing

– Graph (one package–not currently in use)

* Networkx (optional)
https://pypi.python.org/pypi/networkx/

* PyGraphViz (optional)
https://pypi.python.org/pypi/pygraphviz

– Sequence Diagram

* Seqdiag (mcGDB version)

• Toolbox/Target

– Access/ssh

* Pushy
https://pypi.python.org/pypi/pushy

• Documentation

– Rendering

* Sphinx
https://pypi.python.org/pypi/Sphinx

* Sphinx RTD theme (optional)
https://pypi.python.org/pypi/sphinx_rtd_theme

A.1.2 Installation

Our developments were done with GDB 7.10 and Python 2.7.10. GDB supports
Python 2 and Python 3, and our support show work with both versions, except when
communicating with Temanejo/Ayudame, which mandates Python2 usage. Python 3
usability was tested on version 3.4 and 3.5.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 30/35

https://pypi.python.org/pypi/colorlog
https://pypi.python.org/pypi/pysigset/
https://pypi.python.org/pypi/enum34
https://pypi.python.org/pypi/pyparsing
https://pypi.python.org/pypi/networkx/
https://pypi.python.org/pypi/pygraphviz
https://pypi.python.org/pypi/pushy
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx_rtd_theme

APPENDIX A. APPENDIX

Load mcGDB from GDB

Put in .gdbinit:

python
sys.path.append("/path/to/Python")
try:

import mcgdb
#mcgdb.initialize()
mcgdb.initialize_by_name()

except Exception as e:
import traceback
print ("Couldn’t load Model-Centric Debugging: %s" % e)
traceback.print_exc()

end

Put in your $PATH:

ln -s $(which gdb) mcgdb
ln -s mcgdb mcgdb-omp

Convenience with GDB/mcGDB

Add these lines to your .gdbinit:

almost mandatory:

set height 0
set width 0

for convenience:

set breakpoint pending on
set print pretty
set confirm off

for debugging

set python print-stack full

A.1.3 Compile libmcgdb-omp

cd $MCGDB_PATH
cd model/task/environment/openmp/capture/preload
make # generates __binaries__/libmcgdb_omp.preload.so

A.1.4 OpenMP environment

Our OpenMP support works with GNU Gomp and Intel OpenMP.

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 31/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

GNU Gomp

Our GNU Gomp support was tested with a standard gcc 5.2.0 (archlinux x86 build),
with comes with libgomp 1.0.0.

Intel OpenMP

Intel OpenMP should be compiled with debugging symbols (and OMPT support).
Here is the procedure:

mkdir -p intel_omp/{build,install}
cd intel_omp
INTEL_OMP_HOME=$(pwd)
url checked 17/12/2015
wget https://www.openmprtl.org/sites/default/files/libomp_20150701_oss.tgz
tar xvf libomp_20150701_oss.tgz

cd build
cmake -DCMAKE_C_FLAGS="-g -O0" \

-DCMAKE_INSTALL_PREFIX:PATH=$INTEL_OMP_HOME/install \
-DLIBOMP_OMPT_SUPPORT=true \
$INTEL_OMP_HOME/libomp_oss/

-- LIBOMP: OpenMP Version -- 41
-- LIBOMP: OMPT-support -- true
-- LIBOMP: Build -- 20150701
-- LIBOMP: Use predefined linker flags -- true

make && make install

export LD_LIBRARY_PATH=$INTEL_OMP_HOME/install/lib

compile OMP application
path/to/clang -fopenmp -g $FILENAME

check that $INTEL_OMP_HOME/install/lib/libiomp5.so is actually used
ldd a.out | grep libiomp5.so

tested with clang 3.5.0
clang --version
clang version 3.5.0
(https://github.com/clang-omp/clang.git a5dbd16db2515a5b2fa82c7dd416d370968646b1)
(https://github.com/clang-omp/llvm 1c313aa94183e765c450be6bda3913e22abc3073)
Target: x86_64-unknown-linux-gnu

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 32/35

APPENDIX A. APPENDIX

A.1.5 Test, Benchmark and Documentation

Test and benchmark mcGDB

With sys.path correctly configured, run:

import mcgdb
mcgdb.run_tests()

or from command-line:

python3 -c ’import mcgdb; mcgdb.run_tests()’

Generate mcGDB documentation

cd /path/to/mcgdb
cd documentation
make html
or
make -f /path/to/mcgdb/documentation/Makefile html

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 33/35

NANO2017/DEMA Délivrable D1 : Intégration d’OpenMP 3.0

A.1.6 OpenMP Sequence Diagram

Install seqdiag upstream version (for dependencies). It works with Python2 only.

sudo pip2 install seqdiag
sudo pip2 uninstall seqdiag

Then put in your $PATH:

ln -s seqdiag /path/to/python/seqdiag/seqdiag.py

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 34/35

APPENDIX A. APPENDIX

A.2. OPENMP PARALLEL ZONE EXAMPLE

#include <omp.h>
#include <stdio.h>
int main() {

printf("Beginning of main\n");

#pragma omp parallel
{

int id = omp_get_thread_num() + 1;

printf("@%d in the parallel zone\n", id);

#pragma omp critical
{

printf("----------\n");
printf("@%d in critical zone\n", id);
printf("----------\n");

}

#pragma omp sections
{

#pragma omp section
{

printf("@%d in section 1!\n", id);
}

#pragma omp section
{

printf("@%d in section 2!\n", id);
}

#pragma omp section
{

printf("@%d in section 3!\n", id);
}

}
#pragma omp barrier
#pragma omp master

{
printf("@%d Master task...\n", id);

}
#pragma omp barrier

printf("@%d end if parallel zone!!!\n", id);
}
printf("End of main!\n");

}

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 7, 2016
Page: 35/35

	Introduction
	Representing and Controlling Fork-Join Applications
	Internal Representation of OpenMP Executions Model
	representation classes
	capture module
	libmcgdb: a Preloaded Helper for the capture Module

	Interactions with Fork-Join Applications
	Execution representation
	Execution control

	Execution Representation with Sequence Diagrams
	Diagram Semantic
	Diagram Examples
	Parallel Zone
	Single Zone
	Critical Zone
	Task Execution

	Implementation and Connection with mcGDB

	Conclusion
	References
	Appendix
	Access to Source-Code
	Download
	Installation
	Compile libmcgdb-omp
	OpenMP environment
	Test, Benchmark and Documentation
	OpenMP Sequence Diagram

	OpenMP Parallel Zone Example

