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Chapter 1

Introduction

In this report, we present the second part of the performance debugger development,
done during the second semester of 2016. It continues the work started in the first
semester and presented in the NANO2017/DEMA Deliverable D2.

In this second stage of the work, we focused on the multithreaded aspect of
modern applications. We paid a particular attention to the OpenMP programming
environment [2], which was already the target of the previous deliverables of the
project: in the Deliverable D1 and D3, we studied how GDB, the free debugger of
the GNU project [4], would be extended to support OpenMP programming model.
The target of these deliverables was functional debugging, with the improvement of
the control of the multithread execution, as the ease of understanding of the current
application state.

In this deliverable, we pursued the work started in Deliverable D2 on the design
of a interactive profiling tool based on a source level debugger. We extended our
tool and combined the part aware of the OpenMP programming model with the part
dealing with the interactive profiling.

In the following of this report, we first detail the features we implemented for
OpenMP profiling (Chapter 2). Then, we introduce some additional features that
were developed to help developers while doing performance debugging of a Numa
machine (Chapter 3). Finally, we present an illustrated methodology for the the
debugging of a Numa-related performance problem (Chapter 4).
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Chapter 2

OpenMP Profiling

In the deliverable D2, we improved GDB to support interactive execution profiling.
In this first part of the work, we only considered plain C codes, and function-level
profilings. In the second part, we turn towards more realistic applications and focus
on OpenMP programming environment.

OpenMP programming was already the topic of concern of Deliverables D1 and
D3, where we extended mcGDB, our programming-model-centric debugger, to im-
prove the functional debugging of OpenMP applications.

and worked on programming-model centric performance debugging for OpenMP.
In this chapter, we introduce how we we join these two aspects by interconnecting

the capture module of our model-centric debugger (D1/D3) and the interactive
profiler built as part of D2. Then we detail the new fine-grained profiling capabilities
we developed.

2.1. HOOKING THE MODEL-CENTRIC DEBUGGER

As part of the D1/D3 deliverables and the previous work on model-centric debug-
ging [5], we built an extensible debugger environment to hook OpenMP operations.
Figure 2.1.1 gives an overview of this organization:

capture — this module is dependent of the OpenMP implementation. It is in charge
of capturing the operations and updating the OpenMP framework state, usually
through breakpoints and readings of the OpenMP function parameters. It
passes this information to the representation module.

representation — this implementation-independent module keeps track of the state
of the OpenMP execution. Its updates are triggered by the capture module.

interaction — this module is in charge of the interactions with the user, either
through GDB command-line or a custom graphical interface (eg, Temanejo).

Additionally, as we presented in D3, Section 7.2 Aspect-Oriented Programming
for interaction Modules, the representation module can be hooked (with aspects)

7
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Figure 2.1.1: Organization of the model-centric debugger OpenMP module

to developed more reactive interaction modules. This is the feature we used to
interconnect our profiling mechanisms with OpenMP events.

As part of the case-study described in Chapter 4, we put a particular attention
to the profiling of OpenMP static loops. These loops are executed in parallel by
the workers of the current team. The loop iteration space is distributed over the
workers in a static manner, defined by the OpenMP specification. The pragma for
this construct is structured as follows:

#pragma omp for
for (<loop counter start>; <end-of-loop condition>; <increment>)
<loop body block>

We first updated the Intel OpenMP capture module to capture OpenMP parallel
static loops (see the source code in model/task/environment/openmp/capture/
iomp/kmpc_for_static.py).

In this module, we set breakpoints on the Intel OpenMP [1] functions in charge
of the static loop. When these breakpoints are triggered, we parse the functions
parameters to find out the loop upper and lower bounds, its increment and the
source-code location. We also capture the OpenMP thread iteration space.

This information is passed to the representation module’s ForLoopJob class,
which represents an OpenMP parallel loop. Its main methods are the following:

• __init__(self, loc, lower, upper, incr)

• start_work_on(self, worker, lower, upper)

• stop_work_of(self, worker)

They are called by the capture module to instantiate the loop and indicate when
the different threads start and stop the loop execution.

To implement the OpenMP loop profiling, we wrote aspects for these func-
tions, that trigger the beginning and end of a profiling region (see model/task/
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CHAPTER 2. OPENMP PROFILING

environment/openmp/interaction/loop.py). This fine-grained loop profiling is
further described in the following section.

The hooking mechanism we have presented in this section could be easily ex-
tended to other aspects of OpenMP. For instance, the debugger is already aware of
the OpenMP tasks, so implementing task-level profiling would be trivial.

2.2. FINE-GRAINED OPENMP STATIC LOOP PROFILING

In the previous section, we have presented how we hooked mcGDB breakpoints
with the interactive profiler. To control this profiling, we implemented a single
command-line function:

(gdb) omp loop profile iterations

which installs the loop-specific breakpoints and activates a profiling flag. Af-
ter that and when the execution encounters an OpenMP static loop, the debugger
callbacks trigger the beginning of a profiling region. At the end of the loop-chunk
execution, another callback stops it.

In the work of this deliverable, we mainly used the perf stat profiling module.
Modern versions of perf have the ability to profile the execution thread by thread,
however the version installed on our NUMA machine (discussed in the following chap-
ter — Chapter 3) is rather old and does not support it. So we chose to force a single-
threaded execution during the profiling period, with GDB’s scheduler-locking
parameter: at the beginning of the loop-chunk execution, we activate the scheduler-
locking and start the profiling, and at the end we disable it.

Neither GDB nor the scheduler-locking alter the CPU mapping, so this profiling
generates accurate measurements. The drawback, however, is the time overhead in
the full-loop profiling.

In Deliverable 2, Section 11.2 Presenting the Measurements, we detailed how these
profiling measures could be plotted. The illustration used in this section (Figure 2.2.1)
corresponds to a loop profiling. It is important to note that in this plotting, a column
corresponds to one loop-chunk execution profile. The recording order is not deter-
ministic. It reflects the reality of the execution, but does not really have sense per-se.
Hence, we recommend the use of the sorting modifier (<) to force a more meaningful
order.

During OpenMP loop profiling, the interactive profiler can also integrate OpenMP-
specific information in the profiling results. As an example, we added the thread loop
counter start (omp_loop_start) and length (omp_loop_len). The start counter can
be used to sort the measurements (< modifier), and the length counter can be used
to plot only the records with the same chunk size (@2 modifiers for length 2):

omp_loop_start | 98 293 387 290 203 385 194 299 435 56 ... <
omp_loop_len | 3 3 2 3 3 2 3 3 2 3 2 2 3 3 3 3 2 3 3 ... @2
instructions | 118342470 118337189 78900017 118343626 ...

| Rendering chart plot of "omp_loop_start (sorted), omp_loop_len,
| instructions" into /tmp/chart-20170117-155044.png
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Figure 2.2.1: Example of a multi-profile plot, showing the instruction count and
number of CPU cycles, sorted over the number of instructions.

In the following chapter, we detail how we introduce NUMA-specific debugging
and profiling capabilities, before going more in detail into a performance debugging
case-study in the last chapter.
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Chapter 3

Numa-aware Profiling and Debugging

In the previous chapter, we have shown how to interactively profile OpenMP loops.
However, this is still too limited to perform the real-life performance debugging
case-study of Chapter 4.

In this chapter, we put the focus on NUMA-aware profiling and debugging. Our
developments were done on the NUMA machine idchire owned by the Laboratoire
d’Informatique de Grenoble. This machine has 24 Intel Xeon E5-4640 processors of
8 cores (for a total of 192 cores). Each processor has 32GB of local (fast) memory; it
can access the remaining 724GB, but slower. Typical problems that occur on such
machines is frequent memory accesses on remote memory slots. In these cases,
developers should consider moving the data on the processor using it . . . but it is not
always feasible.

In the following, we introduce the additional features we implemented in our
interactive profiling and debugging tool. These features aim at providing developers
with a better understanding of the current state of the NUMA execution (Section 3.1),
additional profiling information (Section 3.2) and possibilities to alter the state of the
NUMA machine to test debugging hypotheses (Section 3.3).

3.1. NUMA-STATE UNDERSTANDING

Natively, GDB does not provide any information related to the hardware topology
of the machine. But for NUMA architectures, it is important to know where threads
are running, and where memory cells are physically stored. If both are located on the
same processor node, then the data accesses will be efficient, otherwise they will be
costly.

(gdb) numa current_node
(gdb) numa current_core

These commands indicateon which core and node the current thread is run-
ning. This information is computed with the help of the kernel, which exposes in
/proc/$PID/task/$LWP_ID/status the cores on which the thread (LWP) can run
(field cpus_allowed_list). If the thread has been pined to a given core (by OpenMP
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for instance), a single core id will be written. If the thread is not pined, it will be a
range.

Once the core id is known, the /proc/cpuinfo kernel file indicates the mapping
between the core (field processor) and its processor node (field “physical id”).

An alternative way to find out the node and core id is to call functions sched_get
cpu (libc) and numa_node_of_cpu (libnuma) within the process address-space, in
the right thread. It gives the same answers, however this second solution is more in-
trusive and may cause unexpected behaviors in GDB usage (ControlĈ may interrupt
these internal functions calls, instead of the normal process execution), so it is not
recommended.

(gdb) numa pagemap

Once the current thread has been located on the machine, developers will want
to locate their memory cells. This information is also exported by the kernel, though
the /sys/devices/system files. It is however harder to retrieve, so we reused a tool
called pagemap1, developed earlier in the team.

Pagemap takes a PID and a memory address as parameter, and returns the pro-
cessor node on which the memory page is located. This is exactly the information we
wanted to provide.

We wrote a GDB command wrapper around this program, and added GDB’s
ability to compute a memory address with the language syntax:

(gdb) numa pagemap &my_var
| Address 0x7fffffffda14 is located on node N18

3.2. NEW PROFILING COUNTERS

Similarly to what we described for OpenMP profiling counters in Section 2.2, we
integrated NUMA information in the profiler counters.

At the beginning of the profiling regions, the commands numa current_node
and numa current_core are called to record which core executes the region. These
counters are then provided as profiler measurements, like the other ones.

The core id information can helps understanding NUMA-related performance
problems, as we describe in the following chapter. It is also useful to specify the
order of the region plots, with the < modifier (see Deliverable D2, Section 11.2). For
instance in OpenMP loop profiling, the order of the profiles is set by the earliest
chunk-execution starts. This order has no particular meaning, it is system and
implementation dependent. Thus, the core id offers a better ordering.

We also experimented an address-to-processor lookup (numa pagemap) at the be-
ginning of OpenMP loops (by recording the location of the array cells accessed during
the chunk execution), but in its naive form it adds a significant time overhead. More
efficient implementations could be designed in the future, such as not launching the
pagemap process at each lookup, or even re-implementing it inside GDB/Python.

1https://forge.imag.fr/projects/pagemap/
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CHAPTER 3. NUMA-AWARE PROFILING AND DEBUGGING

3.3. DEBUGGING HYPOTHESES TESTING

Finally, in order to let developers test debugging hypotheses on-the-fly, we devel-
oped new debugging commands that change the property of the NUMA execution.
They all rely on the move_pages (2) function of the libnuma. We wrote a light-
weight wrapper around this function to drive it from GDB/Python, see model/numa/
move_page.c.

numa spread_pages

This command looks up up the current boundaries of process’ heap (found in
/proc/$PID/maps) and spreads it across all the machine’s nodes, page per page,
on a round-robin fashion.

numa spread_3D_matrix mat sz_x sz_y sz_z sz_elt

This command was tailored to the hypothesis we wanted to test in Chapter 4, but
its design can inspire more general-purpose commands. It takes as parameters a
3-dimensional matrix mat, the size of the three dimensions x, y and z, as well as the
size of an element (eg, sizeof(double).

It then traverses the matrix and spreads its pages across the NUMA nodes. The
spread is done according to the OpenMP static loop distribution scheme: the cells
accessed by threads 1-7 are moved to node 1, those of threads 8-15 go to node 2, etc.

In the following chapter, we present the case-study of a performance debugging,
assisted by an interactive debugger. In this debugging workflow, we illustrate the
usage of the different commands we presented in this chapter and in the previous
one.
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Chapter 4

An Illustrated Interactive Performance Debugging

Workflow

In this chapter, we present and illustrate an the workflow of an interactive perfor-
mance debugging, based on the tools and ideas developed as part of this deliverable.
This case-study is inspired from the work of Drebes et al. [3], carried out as part of
NANO2017/DEMA sub-project 2.

The case-study is based on the OpenMP implementation of MG class C [6], from
the NAS Parallel Benchmarks specification suite. MG runs five kernels on a “Multi-
Grid on a sequence of meshes, long- and short-distance communication, memory
intensive”. The C class corresponds to “standard test problems”.

As for the previous chapter, the study was done on the NUMA machine idchire
owned by the Laboratoire d’Informatique de Grenoble. This machine has 24 Intel
Xeon E5-4640 processors of 8 cores (for a total of 192 cores). Each processor has a
32GB of local (fast) memory; it can access the remaining 724GB, but slower.

4.1. ATTESTING THE PERFORMANCE PROBLEM

The initial step of the debugging consists in attesting the performance problem.
To that purpose, we first run MG.C with Aftermath tracer and visualize the output.
Figure 4.1.1 shows Aftermath OpenMP overview, where the green strips corresponds
to OpenMP parallel for loops. As the pattern is repeated on all the loop executions,
we take one randomly. I corresponds to the first lines of function resid:

#pragma omp for
for (i3 = 1; i3 < n3-1; i3++) {

for (i2 = 1; i2 < n2-1; i2++) {
for (i1 = 0; i1 < n1; i1++) {

u1[i1] = u[i3][i2-1][i1] + u[i3][i2+1][i1]
+ u[i3-1][i2][i1] + u[i3+1][i2][i1];

u2[i1] = u[i3-1][i2-1][i1] + u[i3-1][i2+1][i1]
+ u[i3+1][i2-1][i1] + u[i3+1][i2+1][i1];

}

15
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Figure 4.1.1: Attesting the Performance Problem with Aftermath: each strip (static
parallel loops) should have the same time length.

for (i1 = 1; i1 < n1-1; i1++) {
r[i3][i2][i1] = v[i3][i2][i1]

- a[0] * u[i3][i2][i1]
- a[2] * (u2[i1] + u1[i1-1] + u1[i1+1])
- a[3] * (u2[i1-1] + u2[i1+1]);

}
}

}

A quick look at this function suggests that all the iterations should take the same
time, as the loop code does not dependent of the data content (there is no flow-
control statement).

We can confirm this assumption with a loop-chunk profiling in mcGDB, by profil-
ing the instruction count of each loop chunk execution:

(gdb) mcgdb load_model_by_name om
(gdb) tb resid
(gdb) run
...
(gdb) omp loop profile iterations
(gdb) set profile-perf-counters instructions
(gdb) continue
... ^C
(gdb) profile graph plot-all all
(gdb) profile graph offline
numa core | ....... <
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CHAPTER 4. AN ILLUSTRATED INTERACTIVE PERFORMANCE DEBUGGING
WORKFLOW

omp_loop_len | ....
instructions | .... y2

Figure 4.1.2 shows the plot generated with these commands. The profiling was
manually interrupted after 51 loop-chunk executions. In the plot, the profilings are
sorted according to their numa node value. We can see that this serie is increasing,
but not regularly. This is because not all the profiles have been recorded yet. The serie
omp loop len indicates the length of the OpenMP chunk executed in the profile. It
is either 3 or 2. Finally, the instruction serie indicates the number of instructions
executed during the chunk. We can see two levels, corresponding exactly to the loop
lengths.

Figure 4.1.2: Attesting the Performance Problem with mcGDB: for a given loop-chunk
length, all the executions have the same instruction count

At this stage, developers know that there is a data access problem.

Pinpointing the NUMA data-access problem

To better understand the problem, developers can compute the instruction-per-cycle
(IPC) level of the loop execution, by dividing the instruction count by the cycle count:

(gdb) omp loop profile iterations
(gdb) set profile-perf-counters instructions,cycles
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(gdb) continue
... ^C
(gdb) profile graph plot-all all
(gdb) profile graph offline
numa node | ....... y# <
instructions | .... /
cycles | ..........

Figure 4.1.3: Pinpointing the Performance Problem with mcGDB: the IPC varies
according to the NUMA node.

Figure 4.1.3 shows the plot generated with these commands. We can see that the
IPC levels are often correlated to the NUMA node that ran the loop-chuck.

Plotting the node-misses against the cycles (Figure 4.1.4) finally confirms that
the problem is caused by the location of the data on the NUMA nodes: the node
getting low cycles consumption also has very low node-misses. That suggests that
some data are located on its memory bank, and the other nodes have to access it
remotely.

At this stage, developers know that there is a problem with the data access, related
to the NUMA architecture. We make the assumption that they are aware of the first-
touch policy of NUMA machine, that stores the memory pages on the memory bank
of the core that touches it first (ie, writes on it).
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CHAPTER 4. AN ILLUSTRATED INTERACTIVE PERFORMANCE DEBUGGING
WORKFLOW

Figure 4.1.4: Pinpointing the Performance Problem with mcGDB: the node miss
counter is low on a single node.

To understand the reason of the performance issue, the developers will continue
their investigation by studying the code allocating and initializing the buffers used in
this loop.

4.2. FINDING THE PERFORMANCE PROBLEM

The allocation of the memory buffers is located in the sequential part of the code.
It consists in arrays of 3D matrices, made of indirection arrays:

u = (double ****) malloc((lt+1)*sizeof(double ***));
for (l = lt; l >=1; l--) {

u[l] = (double ***) malloc(m3[l]*sizeof(double **));
for (k = 0; k < m3[l]; k++) {

u[l][k] = (double **) malloc(m2[l]*sizeof(double *));
for (j = 0; j < m2[l]; j++) {

u[l][k][j] = (double *) malloc(m1[l]*sizeof(double));
}

}
}
v = (double ***) malloc(m3[lt]*sizeof(double **));
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for (k = 0; k < m3[lt]; k++) {
v[k] = (double **) malloc(m2[lt]*sizeof(double *));
for (j = 0; j < m2[lt]; j++) {

v[k][j] = (double *) malloc(m1[lt]*sizeof(double));
}

}
r = (double ****) malloc((lt+1)*sizeof(double ***));
for (l = lt; l >=1; l--) {

r[l] = (double ***) malloc(m3[l]*sizeof(double **));
for (k = 0; k < m3[l]; k++) {

r[l][k] = (double **) malloc(m2[l]*sizeof(double *));
for (j = 0; j < m2[l]; j++) {

r[l][k][j] = (double *) malloc(m1[l]*sizeof(double));
}

}
}

We assume that the application developers do not have an advanced knowledge
of memory allocators, and hence they assume (incorrectly) that this code does not
touch the memory pages.

The initialization of the values is done by the same loops doing the computation,
so developers assume (correctly) that the pages are touched by the same core that
will access it later.

For the developers, these two assumptions are contradictory and must be experi-
mentally verified. One way to do it is to measure the system page faults (such faults
are triggered, among other reasons, when a page is touched for the first time): the
allocation is not supposed to do many page faults, whereas the initialization should.

In this code, it is easy to locate the beginning and end of the memory allocation,
and the end of the initialization (they are in sequence). So we used these code lines
to delimit two manual profiling regions:

(gdb) start
(gdb) until <beginning_of_allocation>
# Stopped at <beginning_of_allocation>
(gdb) profile manual start
(gdb) until <end_of_allocation>
# Stopped at <end_of_allocation>
(gdb) profile manual stop
| min_flt: 873,602
(gdb) profile manual start
(gdb) until <end_of_initialization>
# Stopped at <end_of_initialization>
(gdb) profile manual stop
| min_flt: 15,612

This profiling contradicts the developers expectations: the memory allocation
did an order of magnitude more page faults that the initialization (873,602 against
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15,612).
At this stage, developers now know that the problem comes from the memory

allocation: they thought that it was not touched, thus not bound to a particular
NUMA node during this phase. But the evidences show that this is not true.

In practise, the standardglibc malloc implementation writes meta-information
ahead of the pointer it returns. This is fine in most architectures, but not on NUMA
systems.

4.3. FIXING THE PROBLEM

Developers have understood that there is a problem with the memory allocator of
their application. It touches the memory pages, thus forcing the storage on the node
running the main thread.

To ensure that the page distribution is indeed the problem, the developers can
run our heap spread command numa spread_pages. This command spread the
memory pages corresponding to the process’ heap all over the machine’s nodes, in a
round-robin fashion:

(gdb) start
(gdb) until <end_of_allocation>
(gdb) profile spread_pages
| Process heap goes from 0x60c000 to 0x670000 (=400Ki B)
(gdb) continue # or detach
# performance improved from 49.76s to 4.45s

This command improves the computation time by a factor of 10, from 49.76s to
4.45s, just be redistributing the process heap space over all the NUMA nodes.

It confirms that a NUMA-aware memory allocator would improve the overall
performance.

In this chapter, we have shown an interactive performance debugging workflow,
that illustrates the usage and efficiency of the tool developed as part of Deliverables 2
and 4. A conference paper will be prepared in the forthcoming months to publish
and spread these results.
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Chapter 5

Conclusion

In this document, we described the work done as part of the Nano2017/Dema Deliv-
erable 4. We detailed how we improved our interactive OpenMP debugger and joined
two aspects: the functional model-centric debugger (Deliverables D1 and D3) and
the interactive performance profiler started earlier this year (Deliverable D2).

We introduced how to interactively profile OpenMP loops, and test NUMA per-
formance debugging hypothesis. We also describe and illustrated a performance
debugging workflow, done in collaboration with Aftermath, the target tool of the
Sub-project 2.

As part of the Nano2017/Dema sub-project 1, we have demonstrated a novel
approach for OpenMP interactive debugging. This approach relies on the abstraction
of OpenMP’s programming model, and hence could be ported easily to other similar
development environments.

With our illustrated workflow, we demonstrated how interactive debuggers can
help performance debugging, a domain they not usually used for. We showed that
their interactivity allows developers to test and verify debugging hypothesis on-the-
fly, without the need to recompile the source-code, and sometimes even by changing
dynamically it behavior, or some operating system properties.

We are preparing a conference paper out of the results of this deliverable and
those of the Sub-project 2. The paper should be submitted on an international
workshop by the end of February 2017.
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Chapter A

Appendix

A.1. ACCESS TO THE SOURCE CODE

A.1.1 Download

mcgdb

• http://dema.gforge.inria.fr/delivrable/2017-01_mcgdb/mcgdb.tgz

• git+ssh://USER@scm.gforge.inria.fr/gitroot/dema/mcgdb.git

Requirements

pip install colorlog pysigset enum34 pyparsing

• Profiling

– Linux Perf (mandatory)
https://perf.wiki.kernel.org/

• Logging

– Colorlog (recommended)
https://pypi.python.org/pypi/colorlog

• GDB internal thread safety:

– Pysigset (recommended)
https://pypi.python.org/pypi/pysigset/

• Task/OpenMP

– Enum34 (Python2 only)
https://pypi.python.org/pypi/enum34
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– pyparsing
https://pypi.python.org/pypi/pyparsing

• Documentation

– Rendering

* Sphinx
https://pypi.python.org/pypi/Sphinx

* Sphinx RTD theme (optional)
https://pypi.python.org/pypi/sphinx_rtd_theme

A.1.2 Installation

Our developments were done with GDB 7.12 and Python 3.5. GDB supports Python 2
and Python 3, and our support should work with both versions.

Load mcGDB from GDB

Put in .gdbinit:

python
sys.path.append("/path/to/Python")
try:
import mcgdb
#mcgdb.initialize()
mcgdb.initialize_by_name()

except Exception as e:
import traceback
print ("Couldn’t load Model-Centric Debugging: {}".format(e))
traceback.print_exc()

end

Put in your $PATH:

ln -s $(which gdb) mcgdb
ln -s mcgdb mcgdb-omp

Then load your binary with mcgdb-omp

Convenience with GDB/mcGDB

Add these lines to your .gdbinit:

## almost mandatory:

set height 0
set width 0
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## for convenience:

set breakpoint pending on
set print pretty
set confirm off

# for debugging

set python print-stack full

A.1.3 Compile libmcgdb-omp

cd $MCGDB_PATH
cd model/task/environment/openmp/capture/preload
make # generates __binaries__/libmcgdb_omp.preload.so

A.1.4 Compile libmcgdb_perf_stat.preload.so

cd $MCGDB_PATH
cd model/profiling/
make # generates __binaries__/libmcgdb_perf_stat.preload.so

A.1.5 OpenMP environment

Our OpenMP profiling support works with Intel OpenMP.

Intel OpenMP

Intel OpenMP should be compiled with debugging symbols (and optionally OMPT
support). Here is the procedure:

mkdir -p intel_omp/{build,install}
cd intel_omp
INTEL_OMP_HOME=$(pwd)
# url checked 17/12/2015
wget https://www.openmprtl.org/sites/default/files/libomp_20150701_oss.tgz
tar xvf libomp_20150701_oss.tgz

cd build
cmake -DCMAKE_C_FLAGS="-g -O0" \

-DCMAKE_INSTALL_PREFIX:PATH=$INTEL_OMP_HOME/install \
-DLIBOMP_OMPT_SUPPORT=true \
$INTEL_OMP_HOME/libomp_oss/

# -- LIBOMP: OpenMP Version -- 41
# -- LIBOMP: OMPT-support -- true
# -- LIBOMP: Build -- 20150701

Status du document:
Draft

Nom du laboratoire:
LIG/INRIA Corse

January 30, 2017
Page: 29/31



NANO2017/DEMA Livrable D4 : Debugger de performance v2

# -- LIBOMP: Use predefined linker flags -- true

make && make install

export LD_LIBRARY_PATH=$INTEL_OMP_HOME/install/lib

# compile OMP application
path/to/clang -fopenmp -g $FILENAME

# check that $INTEL_OMP_HOME/install/lib/libiomp5.so is actually used
ldd a.out | grep libiomp5.so

# tested with clang 3.5.0
clang --version
# clang version 3.5.0
# (https://github.com/clang-omp/clang.git a5dbd16db2515a5b2fa82c7dd416d370968646b1)
# (https://github.com/clang-omp/llvm 1c313aa94183e765c450be6bda3913e22abc3073)
# Target: x86_64-unknown-linux-gnu
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A.2. RECORDING OF THE INTERACTIVE DEBUGGING

A terminal-based recording of the interactive debugging presented in Chapter 4
is available along with the source-code:

• http://dema.gforge.inria.fr/delivrable/2017-01_mcgdb/video
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